Klasifikasi Helpdesk Menggunakan Metode K-Nearest Neighbor dan TF-ABS

Helpdesk merupakan aplikasi yang bermanfaat bagi pengguna nya untuk memperoleh informasi mengenai layanan yang ada pada sebuah perusahaan atau instansi pemerintah. Proses disposisi tiket helpdesk secara manual dapat menimbulkan kesalahan dalam menentukan unit tujuan tiket serta memperpanjang masa pe...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Muhammad Azis Suprayogi, Riza Adrianti Supono
Format: article
Langue:ID
Publié: Universitas Dian Nuswantoro 2021
Sujets:
knn
Accès en ligne:https://doaj.org/article/5ef6541cc96b4bfcabaf3a89740da27f
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
Description
Résumé:Helpdesk merupakan aplikasi yang bermanfaat bagi pengguna nya untuk memperoleh informasi mengenai layanan yang ada pada sebuah perusahaan atau instansi pemerintah. Proses disposisi tiket helpdesk secara manual dapat menimbulkan kesalahan dalam menentukan unit tujuan tiket serta memperpanjang masa penyelesaian tiket karena adanya waktu tunggu untuk mendisposisikan tiket menuju unit yang sesuai. Klasifikasi teks helpdesk sangat diperlukan untuk mendisposisikan tiket secara tepat dan cepat ke unit yang berwenang menangani tiket. Teks helpdesk diklasifikasi ke dalam 8 kategori unit tujuan yaitu Setditjen, Dit.Humas, Dit.PKNSI, Dit.KND, Dit.BMN, Dit.Penilaian, Dit.PNKNL, dan Dit.Lelang. Klasifikasi menggunakan metode K-Nearest Neighbor (KNN) dengan jumlah tetangga terdekat (k) yaitu k=1,3,5,7,9,11,13,15,17,19 serta metode pembobotan TF-ABS untuk proses seleksi fitur. Jumlah fitur yang digunakan untuk klasifikasi sebanyak 5%, 10%, 15%, 20%, 25% dan 30% dari jumlah seluruh dokumen. Akurasi klasifikasi tertinggi sebesar 90,04% diperoleh pada k=3 dan jumlah fitur sebanyak 15%, sedangkan akurasi terendah 84,54% pada k=19 dan jumlah fitur sebanyak 30%. Hasil klasifikasi helpdesk menggunakan KNN dan TF-ABS dapat menghasilkan akurasi cukup baik.