Metabolic perceptrons for neural computing in biological systems

So far, synthetic genetic circuits have relied on digital logic for information processing. Here the authors present metabolic perceptrons that use analog weighted adders to vary the contributions of multiple inputs, resulting in different classification functions.

Guardado en:
Detalles Bibliográficos
Autores principales: Amir Pandi, Mathilde Koch, Peter L. Voyvodic, Paul Soudier, Jerome Bonnet, Manish Kushwaha, Jean-Loup Faulon
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2019
Materias:
Q
Acceso en línea:https://doaj.org/article/5f0e78829b1940c1802523d6a5e44de7
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:So far, synthetic genetic circuits have relied on digital logic for information processing. Here the authors present metabolic perceptrons that use analog weighted adders to vary the contributions of multiple inputs, resulting in different classification functions.