Metabolic perceptrons for neural computing in biological systems
So far, synthetic genetic circuits have relied on digital logic for information processing. Here the authors present metabolic perceptrons that use analog weighted adders to vary the contributions of multiple inputs, resulting in different classification functions.
Guardado en:
Autores principales: | Amir Pandi, Mathilde Koch, Peter L. Voyvodic, Paul Soudier, Jerome Bonnet, Manish Kushwaha, Jean-Loup Faulon |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/5f0e78829b1940c1802523d6a5e44de7 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Plug-and-play metabolic transducers expand the chemical detection space of cell-free biosensors
por: Peter L. Voyvodic, et al.
Publicado: (2019) -
Large scale active-learning-guided exploration for in vitro protein production optimization
por: Olivier Borkowski, et al.
Publicado: (2020) -
Modeling of Soil Compaction Beneath the Tractor Tire using Multilayer Perceptron Neural Networks
por: Gh Shahgholi, et al.
Publicado: (2018) -
Novel Cooperative Multi-Input Multilayer Perceptron Neural Network Performance Analysis with Application of Solar Irradiance Forecasting
por: M. Madhiarasan, et al.
Publicado: (2021) -
Speeding up quantum perceptron via shortcuts to adiabaticity
por: Yue Ban, et al.
Publicado: (2021)