Metabolic perceptrons for neural computing in biological systems
So far, synthetic genetic circuits have relied on digital logic for information processing. Here the authors present metabolic perceptrons that use analog weighted adders to vary the contributions of multiple inputs, resulting in different classification functions.
Enregistré dans:
Auteurs principaux: | Amir Pandi, Mathilde Koch, Peter L. Voyvodic, Paul Soudier, Jerome Bonnet, Manish Kushwaha, Jean-Loup Faulon |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2019
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/5f0e78829b1940c1802523d6a5e44de7 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Plug-and-play metabolic transducers expand the chemical detection space of cell-free biosensors
par: Peter L. Voyvodic, et autres
Publié: (2019) -
Large scale active-learning-guided exploration for in vitro protein production optimization
par: Olivier Borkowski, et autres
Publié: (2020) -
Modeling of Soil Compaction Beneath the Tractor Tire using Multilayer Perceptron Neural Networks
par: Gh Shahgholi, et autres
Publié: (2018) -
Novel Cooperative Multi-Input Multilayer Perceptron Neural Network Performance Analysis with Application of Solar Irradiance Forecasting
par: M. Madhiarasan, et autres
Publié: (2021) -
Speeding up quantum perceptron via shortcuts to adiabaticity
par: Yue Ban, et autres
Publié: (2021)