Systematic generation of biophysically detailed models for diverse cortical neuron types

Neocortical circuits exhibit diverse cell types that can be difficult to build into computational models. Here the authors employ a genetic algorithm-based parameter optimization to generate multi-compartment Hodgkin-Huxley models for diverse cell types in the Allen Cell Types Database.

Guardado en:
Detalles Bibliográficos
Autores principales: Nathan W. Gouwens, Jim Berg, David Feng, Staci A. Sorensen, Hongkui Zeng, Michael J. Hawrylycz, Christof Koch, Anton Arkhipov
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2018
Materias:
Q
Acceso en línea:https://doaj.org/article/5f1011cab91d4dc5ae8caffe5ac201b9
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:5f1011cab91d4dc5ae8caffe5ac201b9
record_format dspace
spelling oai:doaj.org-article:5f1011cab91d4dc5ae8caffe5ac201b92021-12-02T17:33:05ZSystematic generation of biophysically detailed models for diverse cortical neuron types10.1038/s41467-017-02718-32041-1723https://doaj.org/article/5f1011cab91d4dc5ae8caffe5ac201b92018-02-01T00:00:00Zhttps://doi.org/10.1038/s41467-017-02718-3https://doaj.org/toc/2041-1723Neocortical circuits exhibit diverse cell types that can be difficult to build into computational models. Here the authors employ a genetic algorithm-based parameter optimization to generate multi-compartment Hodgkin-Huxley models for diverse cell types in the Allen Cell Types Database.Nathan W. GouwensJim BergDavid FengStaci A. SorensenHongkui ZengMichael J. HawrylyczChristof KochAnton ArkhipovNature PortfolioarticleScienceQENNature Communications, Vol 9, Iss 1, Pp 1-13 (2018)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Nathan W. Gouwens
Jim Berg
David Feng
Staci A. Sorensen
Hongkui Zeng
Michael J. Hawrylycz
Christof Koch
Anton Arkhipov
Systematic generation of biophysically detailed models for diverse cortical neuron types
description Neocortical circuits exhibit diverse cell types that can be difficult to build into computational models. Here the authors employ a genetic algorithm-based parameter optimization to generate multi-compartment Hodgkin-Huxley models for diverse cell types in the Allen Cell Types Database.
format article
author Nathan W. Gouwens
Jim Berg
David Feng
Staci A. Sorensen
Hongkui Zeng
Michael J. Hawrylycz
Christof Koch
Anton Arkhipov
author_facet Nathan W. Gouwens
Jim Berg
David Feng
Staci A. Sorensen
Hongkui Zeng
Michael J. Hawrylycz
Christof Koch
Anton Arkhipov
author_sort Nathan W. Gouwens
title Systematic generation of biophysically detailed models for diverse cortical neuron types
title_short Systematic generation of biophysically detailed models for diverse cortical neuron types
title_full Systematic generation of biophysically detailed models for diverse cortical neuron types
title_fullStr Systematic generation of biophysically detailed models for diverse cortical neuron types
title_full_unstemmed Systematic generation of biophysically detailed models for diverse cortical neuron types
title_sort systematic generation of biophysically detailed models for diverse cortical neuron types
publisher Nature Portfolio
publishDate 2018
url https://doaj.org/article/5f1011cab91d4dc5ae8caffe5ac201b9
work_keys_str_mv AT nathanwgouwens systematicgenerationofbiophysicallydetailedmodelsfordiversecorticalneurontypes
AT jimberg systematicgenerationofbiophysicallydetailedmodelsfordiversecorticalneurontypes
AT davidfeng systematicgenerationofbiophysicallydetailedmodelsfordiversecorticalneurontypes
AT staciasorensen systematicgenerationofbiophysicallydetailedmodelsfordiversecorticalneurontypes
AT hongkuizeng systematicgenerationofbiophysicallydetailedmodelsfordiversecorticalneurontypes
AT michaeljhawrylycz systematicgenerationofbiophysicallydetailedmodelsfordiversecorticalneurontypes
AT christofkoch systematicgenerationofbiophysicallydetailedmodelsfordiversecorticalneurontypes
AT antonarkhipov systematicgenerationofbiophysicallydetailedmodelsfordiversecorticalneurontypes
_version_ 1718380063430279168