Systematic generation of biophysically detailed models for diverse cortical neuron types
Neocortical circuits exhibit diverse cell types that can be difficult to build into computational models. Here the authors employ a genetic algorithm-based parameter optimization to generate multi-compartment Hodgkin-Huxley models for diverse cell types in the Allen Cell Types Database.
Guardado en:
Autores principales: | , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/5f1011cab91d4dc5ae8caffe5ac201b9 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:5f1011cab91d4dc5ae8caffe5ac201b9 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:5f1011cab91d4dc5ae8caffe5ac201b92021-12-02T17:33:05ZSystematic generation of biophysically detailed models for diverse cortical neuron types10.1038/s41467-017-02718-32041-1723https://doaj.org/article/5f1011cab91d4dc5ae8caffe5ac201b92018-02-01T00:00:00Zhttps://doi.org/10.1038/s41467-017-02718-3https://doaj.org/toc/2041-1723Neocortical circuits exhibit diverse cell types that can be difficult to build into computational models. Here the authors employ a genetic algorithm-based parameter optimization to generate multi-compartment Hodgkin-Huxley models for diverse cell types in the Allen Cell Types Database.Nathan W. GouwensJim BergDavid FengStaci A. SorensenHongkui ZengMichael J. HawrylyczChristof KochAnton ArkhipovNature PortfolioarticleScienceQENNature Communications, Vol 9, Iss 1, Pp 1-13 (2018) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Nathan W. Gouwens Jim Berg David Feng Staci A. Sorensen Hongkui Zeng Michael J. Hawrylycz Christof Koch Anton Arkhipov Systematic generation of biophysically detailed models for diverse cortical neuron types |
description |
Neocortical circuits exhibit diverse cell types that can be difficult to build into computational models. Here the authors employ a genetic algorithm-based parameter optimization to generate multi-compartment Hodgkin-Huxley models for diverse cell types in the Allen Cell Types Database. |
format |
article |
author |
Nathan W. Gouwens Jim Berg David Feng Staci A. Sorensen Hongkui Zeng Michael J. Hawrylycz Christof Koch Anton Arkhipov |
author_facet |
Nathan W. Gouwens Jim Berg David Feng Staci A. Sorensen Hongkui Zeng Michael J. Hawrylycz Christof Koch Anton Arkhipov |
author_sort |
Nathan W. Gouwens |
title |
Systematic generation of biophysically detailed models for diverse cortical neuron types |
title_short |
Systematic generation of biophysically detailed models for diverse cortical neuron types |
title_full |
Systematic generation of biophysically detailed models for diverse cortical neuron types |
title_fullStr |
Systematic generation of biophysically detailed models for diverse cortical neuron types |
title_full_unstemmed |
Systematic generation of biophysically detailed models for diverse cortical neuron types |
title_sort |
systematic generation of biophysically detailed models for diverse cortical neuron types |
publisher |
Nature Portfolio |
publishDate |
2018 |
url |
https://doaj.org/article/5f1011cab91d4dc5ae8caffe5ac201b9 |
work_keys_str_mv |
AT nathanwgouwens systematicgenerationofbiophysicallydetailedmodelsfordiversecorticalneurontypes AT jimberg systematicgenerationofbiophysicallydetailedmodelsfordiversecorticalneurontypes AT davidfeng systematicgenerationofbiophysicallydetailedmodelsfordiversecorticalneurontypes AT staciasorensen systematicgenerationofbiophysicallydetailedmodelsfordiversecorticalneurontypes AT hongkuizeng systematicgenerationofbiophysicallydetailedmodelsfordiversecorticalneurontypes AT michaeljhawrylycz systematicgenerationofbiophysicallydetailedmodelsfordiversecorticalneurontypes AT christofkoch systematicgenerationofbiophysicallydetailedmodelsfordiversecorticalneurontypes AT antonarkhipov systematicgenerationofbiophysicallydetailedmodelsfordiversecorticalneurontypes |
_version_ |
1718380063430279168 |