Systematic generation of biophysically detailed models for diverse cortical neuron types
Neocortical circuits exhibit diverse cell types that can be difficult to build into computational models. Here the authors employ a genetic algorithm-based parameter optimization to generate multi-compartment Hodgkin-Huxley models for diverse cell types in the Allen Cell Types Database.
Guardado en:
Autores principales: | Nathan W. Gouwens, Jim Berg, David Feng, Staci A. Sorensen, Hongkui Zeng, Michael J. Hawrylycz, Christof Koch, Anton Arkhipov |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/5f1011cab91d4dc5ae8caffe5ac201b9 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Generalized leaky integrate-and-fire models classify multiple neuron types
por: Corinne Teeter, et al.
Publicado: (2018) -
The influence of biophysical parameters in a biomechanical model of cortical folding patterns
por: Xiaoyu Wang, et al.
Publicado: (2021) -
A strategy for mapping biophysical to abstract neuronal network models applied to primary visual cortex.
por: Anton V Chizhov, et al.
Publicado: (2021) -
An efficient analytical reduction of detailed nonlinear neuron models
por: Oren Amsalem, et al.
Publicado: (2020) -
Information diversity in individual auditory cortical neurons is associated with functionally distinct coordinated neuronal ensembles
por: Jermyn Z. See, et al.
Publicado: (2021)