Workflow towards automated segmentation of agglomerated, non-spherical particles from electron microscopy images using artificial neural networks
Abstract We present a workflow for obtaining fully trained artificial neural networks that can perform automatic particle segmentations of agglomerated, non-spherical nanoparticles from scanning electron microscopy images “from scratch”, without the need for large training data sets of manually anno...
Guardado en:
Autores principales: | Bastian Rühle, Julian Frederic Krumrey, Vasile-Dan Hodoroaba |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/5f1227f7c1114b9b8aea7aff6a12191a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Workflow and convolutional neural network for automated identification of animal sounds
por: Zachary J. Ruff, et al.
Publicado: (2021) -
Non-spherical particle mixing behaviors by spherical inert particles assisted in a fluidized bed
por: An-Xing Ren, et al.
Publicado: (2019) -
DeepACSON automated segmentation of white matter in 3D electron microscopy
por: Ali Abdollahzadeh, et al.
Publicado: (2021) -
CASSPER is a semantic segmentation-based particle picking algorithm for single-particle cryo-electron microscopy
por: Blesson George, et al.
Publicado: (2021) -
Automated detection and segmentation of synaptic contacts in nearly isotropic serial electron microscopy images.
por: Anna Kreshuk, et al.
Publicado: (2011)