Predicting mortality risk for preterm infants using random forest
Abstract Mortality is an unfortunately common outcome of extremely and very preterm birth. Existing clinical prediction models capture mortality risk at birth but fail to account for the remainder of the hospital course. Infants born < 32 weeks gestation with complete physiologic and clinical dat...
Enregistré dans:
Auteurs principaux: | Jennifer Lee, Jinjin Cai, Fuhai Li, Zachary A. Vesoulis |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/5f2c133598bb4e5e884623873be2e4dc |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Predicting mortality risk for preterm infants using deep learning models with time-series vital sign data
par: Jiarui Feng, et autres
Publié: (2021) -
Neonatal Morbidity and Mortality in Advanced Aged Mothers—Maternal Age Is Not an Independent Risk Factor for Infants Born Very Preterm
par: Nasenien Nourkami-Tutdibi, et autres
Publié: (2021) -
Risk factors for the deterioration of periventricular–intraventricular hemorrhage in preterm infants
par: Tian Wu, et autres
Publié: (2020) -
Antibiotics and the developing intestinal microbiome, metabolome and inflammatory environment in a randomized trial of preterm infants
par: Jordan T. Russell, et autres
Publié: (2021) -
Mortality and neurological outcomes in extremely and very preterm infants born to mothers with hypertensive disorders of pregnancy
par: Noriyuki Nakamura, et autres
Publié: (2021)