Understanding the Unusual Response to High Pressure in KBe2BO3F2
Abstract Strong anisotropic compression with pressure on the remarkable non-linear optical material KBe2BO3F2 has been observed with the linear compression coefficient along the c axis found to be about 40 times larger than that along the a axis. An unusual non-monotonic pressure response was observ...
Guardado en:
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/5f2c9209a6834da0a444256383b50105 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Abstract Strong anisotropic compression with pressure on the remarkable non-linear optical material KBe2BO3F2 has been observed with the linear compression coefficient along the c axis found to be about 40 times larger than that along the a axis. An unusual non-monotonic pressure response was observed for the a lattice parameter. The derived bulk modulus of 31 ± 1 GPa indicates that KBe2BO3F2 is a very soft oxide material yet with stable structure up to 45 GPa. A combination of high-pressure synchrotron powder X-ray diffraction, high-pressure Raman spectroscopy, and Density Functional Theory calculations points to the mechanism for the unusual pressure response being due to the competition between the K-F bond length and K-F-K bond angle and the coupling between the stretching and twisting vibration modes. |
---|