The critical role of pore size on depth-dependent microbial cell counts in sediments

Abstract Cell counts decrease with sediment depth. Typical explanations consider limiting factors such as water availability and chemistry, carbon source, nutrients, energy and temperature, and overlook the role of pore size. Our analyses consider sediment self-compaction, the evolution of pore size...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Junghee Park, J. Carlos Santamarina
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
R
Q
Acceso en línea:https://doaj.org/article/5f31cea695d343a9a11ba3942d38dc05
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract Cell counts decrease with sediment depth. Typical explanations consider limiting factors such as water availability and chemistry, carbon source, nutrients, energy and temperature, and overlook the role of pore size. Our analyses consider sediment self-compaction, the evolution of pore size with depth, and the probability of pores larger than the microbial size to compute the volume fraction of life-compatible pores. We evaluate cell counts vs. depth profiles gathered at 116 sites worldwide. Results confirm the critical role of pore size on cell counts in the subsurface and explain much of the data spread (from ~ 9 orders of magnitude range in cell counts to ~ 2 orders). Cells colonize pores often forming dense biofilms, thus, cell counts in pores are orders of magnitude higher than in the water column. Similar arguments apply to rocks.