Neural heterogeneity promotes robust learning

The authors show that heterogeneity in spiking neural networks improves accuracy and robustness of prediction for complex information processing tasks, results in optimal parameter distribution similar to experimental data and is metabolically efficient for learning tasks at varying timescales.

Guardado en:
Detalles Bibliográficos
Autores principales: Nicolas Perez-Nieves, Vincent C. H. Leung, Pier Luigi Dragotti, Dan F. M. Goodman
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/5f3aee1234744188899e09099851da31
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:The authors show that heterogeneity in spiking neural networks improves accuracy and robustness of prediction for complex information processing tasks, results in optimal parameter distribution similar to experimental data and is metabolically efficient for learning tasks at varying timescales.