Neural heterogeneity promotes robust learning

The authors show that heterogeneity in spiking neural networks improves accuracy and robustness of prediction for complex information processing tasks, results in optimal parameter distribution similar to experimental data and is metabolically efficient for learning tasks at varying timescales.

Guardado en:
Detalles Bibliográficos
Autores principales: Nicolas Perez-Nieves, Vincent C. H. Leung, Pier Luigi Dragotti, Dan F. M. Goodman
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/5f3aee1234744188899e09099851da31
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:5f3aee1234744188899e09099851da31
record_format dspace
spelling oai:doaj.org-article:5f3aee1234744188899e09099851da312021-12-02T19:16:33ZNeural heterogeneity promotes robust learning10.1038/s41467-021-26022-32041-1723https://doaj.org/article/5f3aee1234744188899e09099851da312021-10-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-26022-3https://doaj.org/toc/2041-1723The authors show that heterogeneity in spiking neural networks improves accuracy and robustness of prediction for complex information processing tasks, results in optimal parameter distribution similar to experimental data and is metabolically efficient for learning tasks at varying timescales.Nicolas Perez-NievesVincent C. H. LeungPier Luigi DragottiDan F. M. GoodmanNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-9 (2021)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Nicolas Perez-Nieves
Vincent C. H. Leung
Pier Luigi Dragotti
Dan F. M. Goodman
Neural heterogeneity promotes robust learning
description The authors show that heterogeneity in spiking neural networks improves accuracy and robustness of prediction for complex information processing tasks, results in optimal parameter distribution similar to experimental data and is metabolically efficient for learning tasks at varying timescales.
format article
author Nicolas Perez-Nieves
Vincent C. H. Leung
Pier Luigi Dragotti
Dan F. M. Goodman
author_facet Nicolas Perez-Nieves
Vincent C. H. Leung
Pier Luigi Dragotti
Dan F. M. Goodman
author_sort Nicolas Perez-Nieves
title Neural heterogeneity promotes robust learning
title_short Neural heterogeneity promotes robust learning
title_full Neural heterogeneity promotes robust learning
title_fullStr Neural heterogeneity promotes robust learning
title_full_unstemmed Neural heterogeneity promotes robust learning
title_sort neural heterogeneity promotes robust learning
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/5f3aee1234744188899e09099851da31
work_keys_str_mv AT nicolaspereznieves neuralheterogeneitypromotesrobustlearning
AT vincentchleung neuralheterogeneitypromotesrobustlearning
AT pierluigidragotti neuralheterogeneitypromotesrobustlearning
AT danfmgoodman neuralheterogeneitypromotesrobustlearning
_version_ 1718376914729566208