Neural heterogeneity promotes robust learning
The authors show that heterogeneity in spiking neural networks improves accuracy and robustness of prediction for complex information processing tasks, results in optimal parameter distribution similar to experimental data and is metabolically efficient for learning tasks at varying timescales.
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/5f3aee1234744188899e09099851da31 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:5f3aee1234744188899e09099851da31 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:5f3aee1234744188899e09099851da312021-12-02T19:16:33ZNeural heterogeneity promotes robust learning10.1038/s41467-021-26022-32041-1723https://doaj.org/article/5f3aee1234744188899e09099851da312021-10-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-26022-3https://doaj.org/toc/2041-1723The authors show that heterogeneity in spiking neural networks improves accuracy and robustness of prediction for complex information processing tasks, results in optimal parameter distribution similar to experimental data and is metabolically efficient for learning tasks at varying timescales.Nicolas Perez-NievesVincent C. H. LeungPier Luigi DragottiDan F. M. GoodmanNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-9 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Nicolas Perez-Nieves Vincent C. H. Leung Pier Luigi Dragotti Dan F. M. Goodman Neural heterogeneity promotes robust learning |
description |
The authors show that heterogeneity in spiking neural networks improves accuracy and robustness of prediction for complex information processing tasks, results in optimal parameter distribution similar to experimental data and is metabolically efficient for learning tasks at varying timescales. |
format |
article |
author |
Nicolas Perez-Nieves Vincent C. H. Leung Pier Luigi Dragotti Dan F. M. Goodman |
author_facet |
Nicolas Perez-Nieves Vincent C. H. Leung Pier Luigi Dragotti Dan F. M. Goodman |
author_sort |
Nicolas Perez-Nieves |
title |
Neural heterogeneity promotes robust learning |
title_short |
Neural heterogeneity promotes robust learning |
title_full |
Neural heterogeneity promotes robust learning |
title_fullStr |
Neural heterogeneity promotes robust learning |
title_full_unstemmed |
Neural heterogeneity promotes robust learning |
title_sort |
neural heterogeneity promotes robust learning |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/5f3aee1234744188899e09099851da31 |
work_keys_str_mv |
AT nicolaspereznieves neuralheterogeneitypromotesrobustlearning AT vincentchleung neuralheterogeneitypromotesrobustlearning AT pierluigidragotti neuralheterogeneitypromotesrobustlearning AT danfmgoodman neuralheterogeneitypromotesrobustlearning |
_version_ |
1718376914729566208 |