Neural heterogeneity promotes robust learning
The authors show that heterogeneity in spiking neural networks improves accuracy and robustness of prediction for complex information processing tasks, results in optimal parameter distribution similar to experimental data and is metabolically efficient for learning tasks at varying timescales.
Guardado en:
Autores principales: | Nicolas Perez-Nieves, Vincent C. H. Leung, Pier Luigi Dragotti, Dan F. M. Goodman |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/5f3aee1234744188899e09099851da31 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Aspiration dynamics generate robust predictions in heterogeneous populations
por: Lei Zhou, et al.
Publicado: (2021) -
Quantifying the Robustness of Complex Networks with Heterogeneous Nodes
por: Prasan Ratnayake, et al.
Publicado: (2021) -
Winsorization for Robust Bayesian Neural Networks
por: Somya Sharma, et al.
Publicado: (2021) -
Robust high-dimensional memory-augmented neural networks
por: Geethan Karunaratne, et al.
Publicado: (2021) -
Making brain–machine interfaces robust to future neural variability
por: David Sussillo, et al.
Publicado: (2016)