Investigation of the lightest hybrid meson candidate with a coupled-channel analysis of $${{\bar{p}}p}$$ p ¯ p -, $$\pi ^- p$$ π - p - and $${\pi \pi }$$ π π -Data

Abstract A sophisticated coupled-channel analysis is presented that combines different processes: the channels $${\pi ^0\pi ^0\eta }$$ π 0 π 0 η , $${\pi ^0\eta \eta }$$ π 0 η η and $${K^+K^-\pi ^0}$$ K + K - π 0 from $${{\bar{p}}p}$$ p ¯ p annihilations, the P- and D-wave amplitudes of the $$\pi \e...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: B. Kopf, M. Albrecht, H. Koch, M. Küßner, J. Pychy, X. Qin, U. Wiedner
Formato: article
Lenguaje:EN
Publicado: SpringerOpen 2021
Materias:
Acceso en línea:https://doaj.org/article/5f3b34d0286741caa2fe46259d0c656a
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract A sophisticated coupled-channel analysis is presented that combines different processes: the channels $${\pi ^0\pi ^0\eta }$$ π 0 π 0 η , $${\pi ^0\eta \eta }$$ π 0 η η and $${K^+K^-\pi ^0}$$ K + K - π 0 from $${{\bar{p}}p}$$ p ¯ p annihilations, the P- and D-wave amplitudes of the $$\pi \eta $$ π η and $$\pi \eta ^\prime $$ π η ′ systems produced in $$\pi ^-p$$ π - p scattering, and data from $${\pi \pi }$$ π π -scattering reactions. Hence our analysis combines the data sets used in two independent previous analyses published by the Crystal Barrel experiment and by the JPAC group. Based on the new insights from these studies, this paper aims at a better understanding of the spin-exotic $$\pi _1$$ π 1 resonances in the light-meson sector. By utilizing the K-matrix approach and realizing the analyticity via Chew-Mandelstam functions the amplitude of the spin-exotic wave can be well described by a single $$\pi _1$$ π 1 pole for both systems, $$\pi \eta $$ π η and $$\pi \eta ^\prime $$ π η ′ . The mass and the width of the $$\pi _1$$ π 1 -pole are measured to be $$(1623 \, \pm \, 47 \, ^{+24}_{-75})\, \mathrm {MeV/}c^2$$ ( 1623 ± 47 - 75 + 24 ) MeV / c 2 and $$(455 \, \pm 88 \, ^{+144}_{-175})\, \mathrm {MeV}$$ ( 455 ± 88 - 175 + 144 ) MeV .