Carbon-Supported KCoMoS<sub>2</sub> for Alcohol Synthesis from Synthesis Gas
KCoMoS<sub>2</sub> was supported on various carbon support materials to study the support effect on synthesis gas conversion. Next to two activated carbons with high micropore volume, a traditional alumina (<i>γ</i>-Al<sub>2</sub>O<sub>3</sub>) support...
Saved in:
Main Authors: | , , , , , , |
---|---|
Format: | article |
Language: | EN |
Published: |
MDPI AG
2021
|
Subjects: | |
Online Access: | https://doaj.org/article/5f53283e41544d9c8f343964faa19c06 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | KCoMoS<sub>2</sub> was supported on various carbon support materials to study the support effect on synthesis gas conversion. Next to two activated carbons with high micropore volume, a traditional alumina (<i>γ</i>-Al<sub>2</sub>O<sub>3</sub>) support and its carbon coated form (CCA) were studied for comparison. Coating alumina with carbon increases the selectivity to alcohols, but the AC-supported catalysts show even higher alcohol selectivities and yields, especially at higher temperatures where the conversions over the AC-supported catalysts increase more than those over the <i>γ</i>-Al<sub>2</sub>O<sub>3</sub>-based catalysts. Increasing acidity leads to decreased CO conversion yield of alcohols. The two activated-carbon-supported catalysts give the highest yield of ethanol at the highest conversion studied, which seems to be due to increased KCoMoS<sub>2</sub> stacking and possibly to the presence of micropores and low amount of mesopores. |
---|