Nanocomposite-based dual enzyme system for broad-spectrum scavenging of reactive oxygen species

Abstract A broad-spectrum reactive oxygen species (ROS)-scavenging hybrid material (CASCADE) was developed by sequential adsorption of heparin (HEP) and poly(L-lysine) (PLL) polyelectrolytes together with superoxide dismutase (SOD) and horseradish peroxidase (HRP) antioxidant enzymes on layered doub...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Marko Pavlovic, Szabolcs Muráth, Xénia Katona, Nizar B. Alsharif, Paul Rouster, József Maléth, Istvan Szilagyi
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/5f56db5096d54a3a834ffc02c668dbb6
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:5f56db5096d54a3a834ffc02c668dbb6
record_format dspace
spelling oai:doaj.org-article:5f56db5096d54a3a834ffc02c668dbb62021-12-02T14:28:14ZNanocomposite-based dual enzyme system for broad-spectrum scavenging of reactive oxygen species10.1038/s41598-021-83819-42045-2322https://doaj.org/article/5f56db5096d54a3a834ffc02c668dbb62021-02-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-83819-4https://doaj.org/toc/2045-2322Abstract A broad-spectrum reactive oxygen species (ROS)-scavenging hybrid material (CASCADE) was developed by sequential adsorption of heparin (HEP) and poly(L-lysine) (PLL) polyelectrolytes together with superoxide dismutase (SOD) and horseradish peroxidase (HRP) antioxidant enzymes on layered double hydroxide (LDH) nanoclay support. The synthetic conditions were optimized so that CASCADE possessed remarkable structural (no enzyme leakage) and colloidal (excellent resistance against salt-induced aggregation) stability. The obtained composite was active in decomposition of both superoxide radical anions and hydrogen peroxide in biochemical assays revealing that the strong electrostatic interaction with the functionalized support led to high enzyme loadings, nevertheless, it did not interfere with the native enzyme conformation. In vitro tests demonstrated that ROS generated in human cervical adenocarcinoma cells were successfully consumed by the hybrid material. The cellular uptake was not accompanied with any toxicity effects, which makes the developed CASCADE a promising candidate for treatment of oxidative stress-related diseases.Marko PavlovicSzabolcs MuráthXénia KatonaNizar B. AlsharifPaul RousterJózsef MaléthIstvan SzilagyiNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-10 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Marko Pavlovic
Szabolcs Muráth
Xénia Katona
Nizar B. Alsharif
Paul Rouster
József Maléth
Istvan Szilagyi
Nanocomposite-based dual enzyme system for broad-spectrum scavenging of reactive oxygen species
description Abstract A broad-spectrum reactive oxygen species (ROS)-scavenging hybrid material (CASCADE) was developed by sequential adsorption of heparin (HEP) and poly(L-lysine) (PLL) polyelectrolytes together with superoxide dismutase (SOD) and horseradish peroxidase (HRP) antioxidant enzymes on layered double hydroxide (LDH) nanoclay support. The synthetic conditions were optimized so that CASCADE possessed remarkable structural (no enzyme leakage) and colloidal (excellent resistance against salt-induced aggregation) stability. The obtained composite was active in decomposition of both superoxide radical anions and hydrogen peroxide in biochemical assays revealing that the strong electrostatic interaction with the functionalized support led to high enzyme loadings, nevertheless, it did not interfere with the native enzyme conformation. In vitro tests demonstrated that ROS generated in human cervical adenocarcinoma cells were successfully consumed by the hybrid material. The cellular uptake was not accompanied with any toxicity effects, which makes the developed CASCADE a promising candidate for treatment of oxidative stress-related diseases.
format article
author Marko Pavlovic
Szabolcs Muráth
Xénia Katona
Nizar B. Alsharif
Paul Rouster
József Maléth
Istvan Szilagyi
author_facet Marko Pavlovic
Szabolcs Muráth
Xénia Katona
Nizar B. Alsharif
Paul Rouster
József Maléth
Istvan Szilagyi
author_sort Marko Pavlovic
title Nanocomposite-based dual enzyme system for broad-spectrum scavenging of reactive oxygen species
title_short Nanocomposite-based dual enzyme system for broad-spectrum scavenging of reactive oxygen species
title_full Nanocomposite-based dual enzyme system for broad-spectrum scavenging of reactive oxygen species
title_fullStr Nanocomposite-based dual enzyme system for broad-spectrum scavenging of reactive oxygen species
title_full_unstemmed Nanocomposite-based dual enzyme system for broad-spectrum scavenging of reactive oxygen species
title_sort nanocomposite-based dual enzyme system for broad-spectrum scavenging of reactive oxygen species
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/5f56db5096d54a3a834ffc02c668dbb6
work_keys_str_mv AT markopavlovic nanocompositebaseddualenzymesystemforbroadspectrumscavengingofreactiveoxygenspecies
AT szabolcsmurath nanocompositebaseddualenzymesystemforbroadspectrumscavengingofreactiveoxygenspecies
AT xeniakatona nanocompositebaseddualenzymesystemforbroadspectrumscavengingofreactiveoxygenspecies
AT nizarbalsharif nanocompositebaseddualenzymesystemforbroadspectrumscavengingofreactiveoxygenspecies
AT paulrouster nanocompositebaseddualenzymesystemforbroadspectrumscavengingofreactiveoxygenspecies
AT jozsefmaleth nanocompositebaseddualenzymesystemforbroadspectrumscavengingofreactiveoxygenspecies
AT istvanszilagyi nanocompositebaseddualenzymesystemforbroadspectrumscavengingofreactiveoxygenspecies
_version_ 1718391254760292352