Comprehensive Metabolomic Analysis of IDH1 R132H Clinical Glioma Samples Reveals Suppression of β-oxidation Due to Carnitine Deficiency

Abstract Gliomas with Isocitrate dehydrogenase 1 (IDH1) mutation have alterations in several enzyme activities, resulting in various metabolic changes. The aim of this study was to determine a mechanism for the better prognosis of gliomas with IDH mutation by performing metabolomic analysis. To unde...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Satsuki Miyata, Kaoru Tominaga, Eiji Sakashita, Masashi Urabe, Yoshiyuki Onuki, Akira Gomi, Takashi Yamaguchi, Makiko Mieno, Hiroaki Mizukami, Akihiro Kume, Keiya Ozawa, Eiju Watanabe, Kensuke Kawai, Hitoshi Endo
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2019
Materias:
R
Q
Acceso en línea:https://doaj.org/article/5f6a67cbdf8045f0aa03230bb5c89474
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract Gliomas with Isocitrate dehydrogenase 1 (IDH1) mutation have alterations in several enzyme activities, resulting in various metabolic changes. The aim of this study was to determine a mechanism for the better prognosis of gliomas with IDH mutation by performing metabolomic analysis. To understand the metabolic state of human gliomas, we analyzed clinical samples obtained from surgical resection of glioma patients (grades II–IV) with or without the IDH1 mutation, and compared the results with U87 glioblastoma cells overexpressing IDH1 or IDH1 R132H . In clinical samples of gliomas with IDH1 mutation, levels of D-2-hydroxyglutarate (D-2HG) were increased significantly compared with gliomas without IDH mutation. Gliomas with IDH mutation also showed decreased intermediates in the tricarboxylic acid cycle and pathways involved in the production of energy, amino acids, and nucleic acids. The marked difference in the metabolic profile in IDH mutant clinical glioma samples compared with that of mutant IDH expressing cells includes a decrease in β-oxidation due to acyl-carnitine and carnitine deficiencies. These metabolic changes may explain the lower cell division rate observed in IDH mutant gliomas and may provide a better prognosis in IDH mutant gliomas.