Neural network based 3D tracking with a graphene transparent focal stack imaging system
Transparent photodetectors based on graphene stacked vertically along the optical axis have shown promising potential for light field reconstruction. Here, the authors develop transparent photodetector arrays and implement a neural network for real-time 3D optical imaging and object tracking.
Guardado en:
Autores principales: | Dehui Zhang, Zhen Xu, Zhengyu Huang, Audrey Rose Gutierrez, Cameron J. Blocker, Che-Hung Liu, Miao-Bin Lien, Gong Cheng, Zhe Liu, Il Yong Chun, Jeffrey A. Fessler, Zhaohui Zhong, Theodore B. Norris |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/5f72d919c06242deb5c169a7bf037810 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Connecting supplier and DoD blockchains for transparent part tracking
por: Francis Asuncion, et al.
Publicado: (2021) -
Realization of mid-infrared graphene hyperbolic metamaterials
por: You-Chia Chang, et al.
Publicado: (2016) -
Stacking fault energy in concentrated alloys
por: Mulaine Shih, et al.
Publicado: (2021) -
Pressure-induced commensurate stacking of graphene on boron nitride
por: Matthew Yankowitz, et al.
Publicado: (2016) -
Electrochemical Performance of Supercapacitor with Stacked Copper Foils Coated with Graphene Nanoplatelets
por: S. L. Chiam, et al.
Publicado: (2018)