New polyp image classification technique using transfer learning of network-in-network structure in endoscopic images
Abstract While colorectal cancer is known to occur in the gastrointestinal tract. It is the third most common form of cancer of 27 major types of cancer in South Korea and worldwide. Colorectal polyps are known to increase the potential of developing colorectal cancer. Detected polyps need to be res...
Enregistré dans:
Auteurs principaux: | Young Jae Kim, Jang Pyo Bae, Jun-Won Chung, Dong Kyun Park, Kwang Gi Kim, Yoon Jae Kim |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/5f8f89d4669f4c1aaa3962a6ee25b6d3 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Single Shot Multibox Detector Automatic Polyp Detection Network Based on Gastrointestinal Endoscopic Images
par: Xiaoling Chen, et autres
Publié: (2021) -
Comparison of machine and deep learning for the classification of cervical cancer based on cervicography images
par: Ye Rang Park, et autres
Publié: (2021) -
Artificial intelligence-based endoscopic diagnosis of colorectal polyps using residual networks.
par: Yoriaki Komeda, et autres
Publié: (2021) -
Evaluation of transfer learning in deep convolutional neural network models for cardiac short axis slice classification
par: Namgyu Ho, et autres
Publié: (2021) -
A deep learning algorithm for automated measurement of vertebral body compression from X-ray images
par: Jae Won Seo, et autres
Publié: (2021)