CeO2NPs relieve radiofrequency radiation, improve testosterone synthesis, and clock gene expression in Leydig cells by enhancing antioxidation

Fenju Qin,1,2 Tao Shen,1 Honglong Cao,3 Junchao Qian,4 Dan Zou,1 Mingkang Ye,1 Hailong Pei21Department of Biotechnology and Bioengineering, Suzhou University of Science and Technology, Suzhou 215009, People’s Republic of China; 2School of Radiation Medicine and Protection, Medical College...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Qin F, Shen T, Cao H, Qian J, Zou D, Ye M, Pei H
Formato: article
Lenguaje:EN
Publicado: Dove Medical Press 2019
Materias:
Acceso en línea:https://doaj.org/article/5f8fb0841cf8467291bac5f88ea0b865
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:5f8fb0841cf8467291bac5f88ea0b865
record_format dspace
spelling oai:doaj.org-article:5f8fb0841cf8467291bac5f88ea0b8652021-12-02T04:18:21ZCeO2NPs relieve radiofrequency radiation, improve testosterone synthesis, and clock gene expression in Leydig cells by enhancing antioxidation1178-2013https://doaj.org/article/5f8fb0841cf8467291bac5f88ea0b8652019-06-01T00:00:00Zhttps://www.dovepress.com/ceo2nps-relieve-radiofrequency-radiation-improve-testosterone-synthesi-peer-reviewed-article-IJNhttps://doaj.org/toc/1178-2013Fenju Qin,1,2 Tao Shen,1 Honglong Cao,3 Junchao Qian,4 Dan Zou,1 Mingkang Ye,1 Hailong Pei21Department of Biotechnology and Bioengineering, Suzhou University of Science and Technology, Suzhou 215009, People’s Republic of China; 2School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, People’s Republic of China; 3School of Electronic & Information Engineering, Soochow University, Suzhou 215006, People’s Republic of China; 4Jiangsu Key Laboratory for Environment Functional Materials, Suzhou University of Science and Technology, Suzhou 215009, People’s Republic of ChinaIntroduction: The ratio of Ce3+,/Ce4+, in their structure confers unique functions on cerium oxide nanoparticles (CeO2NPs) containing rare earth elements in scavenging free radicals and protecting against oxidative damage. The potential of CeO2NPs to protect testosterone synthesis in primary mouse Leydig cells during exposure to 1,800 MHz radiofrequency (RF) radiation was examined in vitro.Methods: Leydig cells were treated with different concentrations of CeO2NPs to identify the optimum concentration for cell proliferation. The cells were pretreated with the optimum dose of CeO2NPs for 24 hrs and then exposed to 1,800 MHz RF at a power density of 200.27 μW/cm2, (specific absorption rate (SAR), 0.116 W/kg) for 1 hr, 2 hrs, or 4 hrs. The medium was used to measure the testosterone concentration. The cells were collected to determine the antioxidant indices (catalase [CAT], malondialdehyde [MDA], and total antioxidant capacity [T-AOC]), and the mRNA expression of the testosterone synthase genes (Star, Cyp11a1, and Hsd-3β) and clock genes (Clock, Bmal1, and Rorα).Results: Our preliminary result showed that 128 μg/mL CeO2NPs was the optimum dose for cell proliferation. Cells exposed to RF alone showed reduced levels of testosterone, T-AOC, and CAT activities, increased MDA content, and the downregulated genes expression of Star, Cyp11a1, Hsd-3β, Clock, Bmal1, and Rorα. Pretreatment of the cells with 128 μg/mL CeO2NPs for 24 hrs followed by RF exposure significantly increased testosterone synthesis, upregulated the expression of the testosterone synthase and clock genes, and increased the resistance to oxidative damage in Leydig cells compared with those in cells exposed to RF alone.Conclusion: Exposure to 1,800 MHz RF had adverse effects on testosterone synthesis, antioxidant levels, and clock gene expression in primary Leydig cells. Pretreatment with CeO2NPs prevented the adverse effects on testosterone synthesis induced by RF exposure by regulating their antioxidant capacity and clock gene expression in vitro. Further studies of the mechanism underlying the protective function of CeO2NPs against RF in the male reproductive system are required.Keywords: CeO2NPs radiofrequency radiation, Leydig cell, testosterone synthesis, clock genes, antioxidantQin FShen TCao HQian JZou DYe MPei HDove Medical PressarticleCeO2 NPsRadiofrequency radiationLeydig cellTestosterone synthesisClock genesAntioxidantMedicine (General)R5-920ENInternational Journal of Nanomedicine, Vol Volume 14, Pp 4601-4611 (2019)
institution DOAJ
collection DOAJ
language EN
topic CeO2 NPs
Radiofrequency radiation
Leydig cell
Testosterone synthesis
Clock genes
Antioxidant
Medicine (General)
R5-920
spellingShingle CeO2 NPs
Radiofrequency radiation
Leydig cell
Testosterone synthesis
Clock genes
Antioxidant
Medicine (General)
R5-920
Qin F
Shen T
Cao H
Qian J
Zou D
Ye M
Pei H
CeO2NPs relieve radiofrequency radiation, improve testosterone synthesis, and clock gene expression in Leydig cells by enhancing antioxidation
description Fenju Qin,1,2 Tao Shen,1 Honglong Cao,3 Junchao Qian,4 Dan Zou,1 Mingkang Ye,1 Hailong Pei21Department of Biotechnology and Bioengineering, Suzhou University of Science and Technology, Suzhou 215009, People’s Republic of China; 2School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, People’s Republic of China; 3School of Electronic & Information Engineering, Soochow University, Suzhou 215006, People’s Republic of China; 4Jiangsu Key Laboratory for Environment Functional Materials, Suzhou University of Science and Technology, Suzhou 215009, People’s Republic of ChinaIntroduction: The ratio of Ce3+,/Ce4+, in their structure confers unique functions on cerium oxide nanoparticles (CeO2NPs) containing rare earth elements in scavenging free radicals and protecting against oxidative damage. The potential of CeO2NPs to protect testosterone synthesis in primary mouse Leydig cells during exposure to 1,800 MHz radiofrequency (RF) radiation was examined in vitro.Methods: Leydig cells were treated with different concentrations of CeO2NPs to identify the optimum concentration for cell proliferation. The cells were pretreated with the optimum dose of CeO2NPs for 24 hrs and then exposed to 1,800 MHz RF at a power density of 200.27 μW/cm2, (specific absorption rate (SAR), 0.116 W/kg) for 1 hr, 2 hrs, or 4 hrs. The medium was used to measure the testosterone concentration. The cells were collected to determine the antioxidant indices (catalase [CAT], malondialdehyde [MDA], and total antioxidant capacity [T-AOC]), and the mRNA expression of the testosterone synthase genes (Star, Cyp11a1, and Hsd-3β) and clock genes (Clock, Bmal1, and Rorα).Results: Our preliminary result showed that 128 μg/mL CeO2NPs was the optimum dose for cell proliferation. Cells exposed to RF alone showed reduced levels of testosterone, T-AOC, and CAT activities, increased MDA content, and the downregulated genes expression of Star, Cyp11a1, Hsd-3β, Clock, Bmal1, and Rorα. Pretreatment of the cells with 128 μg/mL CeO2NPs for 24 hrs followed by RF exposure significantly increased testosterone synthesis, upregulated the expression of the testosterone synthase and clock genes, and increased the resistance to oxidative damage in Leydig cells compared with those in cells exposed to RF alone.Conclusion: Exposure to 1,800 MHz RF had adverse effects on testosterone synthesis, antioxidant levels, and clock gene expression in primary Leydig cells. Pretreatment with CeO2NPs prevented the adverse effects on testosterone synthesis induced by RF exposure by regulating their antioxidant capacity and clock gene expression in vitro. Further studies of the mechanism underlying the protective function of CeO2NPs against RF in the male reproductive system are required.Keywords: CeO2NPs radiofrequency radiation, Leydig cell, testosterone synthesis, clock genes, antioxidant
format article
author Qin F
Shen T
Cao H
Qian J
Zou D
Ye M
Pei H
author_facet Qin F
Shen T
Cao H
Qian J
Zou D
Ye M
Pei H
author_sort Qin F
title CeO2NPs relieve radiofrequency radiation, improve testosterone synthesis, and clock gene expression in Leydig cells by enhancing antioxidation
title_short CeO2NPs relieve radiofrequency radiation, improve testosterone synthesis, and clock gene expression in Leydig cells by enhancing antioxidation
title_full CeO2NPs relieve radiofrequency radiation, improve testosterone synthesis, and clock gene expression in Leydig cells by enhancing antioxidation
title_fullStr CeO2NPs relieve radiofrequency radiation, improve testosterone synthesis, and clock gene expression in Leydig cells by enhancing antioxidation
title_full_unstemmed CeO2NPs relieve radiofrequency radiation, improve testosterone synthesis, and clock gene expression in Leydig cells by enhancing antioxidation
title_sort ceo2nps relieve radiofrequency radiation, improve testosterone synthesis, and clock gene expression in leydig cells by enhancing antioxidation
publisher Dove Medical Press
publishDate 2019
url https://doaj.org/article/5f8fb0841cf8467291bac5f88ea0b865
work_keys_str_mv AT qinf ceo2npsrelieveradiofrequencyradiationimprovetestosteronesynthesisandclockgeneexpressioninleydigcellsbyenhancingantioxidation
AT shent ceo2npsrelieveradiofrequencyradiationimprovetestosteronesynthesisandclockgeneexpressioninleydigcellsbyenhancingantioxidation
AT caoh ceo2npsrelieveradiofrequencyradiationimprovetestosteronesynthesisandclockgeneexpressioninleydigcellsbyenhancingantioxidation
AT qianj ceo2npsrelieveradiofrequencyradiationimprovetestosteronesynthesisandclockgeneexpressioninleydigcellsbyenhancingantioxidation
AT zoud ceo2npsrelieveradiofrequencyradiationimprovetestosteronesynthesisandclockgeneexpressioninleydigcellsbyenhancingantioxidation
AT yem ceo2npsrelieveradiofrequencyradiationimprovetestosteronesynthesisandclockgeneexpressioninleydigcellsbyenhancingantioxidation
AT peih ceo2npsrelieveradiofrequencyradiationimprovetestosteronesynthesisandclockgeneexpressioninleydigcellsbyenhancingantioxidation
_version_ 1718401314115813376