Spectral Theory For Strongly Continuous Cosine
Let (C(t))t∈ℝ be a strongly continuous cosine family and A be its infinitesimal generator. In this work, we prove that, if C(t) – cosh λt is semi-Fredholm (resp. semi-Browder, Drazin inversible, left essentially Drazin and right essentially Drazin invertible) operator and λt ∉ iπℤ, then A – λ2 is al...
Guardado en:
Autor principal: | |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/5f90dd5c0a22451ca71aa175ff851058 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:5f90dd5c0a22451ca71aa175ff851058 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:5f90dd5c0a22451ca71aa175ff8510582021-12-05T14:10:45ZSpectral Theory For Strongly Continuous Cosine2299-328210.1515/conop-2020-0110https://doaj.org/article/5f90dd5c0a22451ca71aa175ff8510582021-03-01T00:00:00Zhttps://doi.org/10.1515/conop-2020-0110https://doaj.org/toc/2299-3282Let (C(t))t∈ℝ be a strongly continuous cosine family and A be its infinitesimal generator. In this work, we prove that, if C(t) – cosh λt is semi-Fredholm (resp. semi-Browder, Drazin inversible, left essentially Drazin and right essentially Drazin invertible) operator and λt ∉ iπℤ, then A – λ2 is also. We show by counterexample that the converse is false in general.Boua HamidDe Gruyterarticlecosinesemi-fredholmdrazin invertiblesemi-browderleft essentially drazin invertibleright essentially drazin invertible47d0947a11MathematicsQA1-939ENConcrete Operators, Vol 8, Iss 1, Pp 40-47 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
cosine semi-fredholm drazin invertible semi-browder left essentially drazin invertible right essentially drazin invertible 47d09 47a11 Mathematics QA1-939 |
spellingShingle |
cosine semi-fredholm drazin invertible semi-browder left essentially drazin invertible right essentially drazin invertible 47d09 47a11 Mathematics QA1-939 Boua Hamid Spectral Theory For Strongly Continuous Cosine |
description |
Let (C(t))t∈ℝ be a strongly continuous cosine family and A be its infinitesimal generator. In this work, we prove that, if C(t) – cosh λt is semi-Fredholm (resp. semi-Browder, Drazin inversible, left essentially Drazin and right essentially Drazin invertible) operator and λt ∉ iπℤ, then A – λ2 is also. We show by counterexample that the converse is false in general. |
format |
article |
author |
Boua Hamid |
author_facet |
Boua Hamid |
author_sort |
Boua Hamid |
title |
Spectral Theory For Strongly Continuous Cosine |
title_short |
Spectral Theory For Strongly Continuous Cosine |
title_full |
Spectral Theory For Strongly Continuous Cosine |
title_fullStr |
Spectral Theory For Strongly Continuous Cosine |
title_full_unstemmed |
Spectral Theory For Strongly Continuous Cosine |
title_sort |
spectral theory for strongly continuous cosine |
publisher |
De Gruyter |
publishDate |
2021 |
url |
https://doaj.org/article/5f90dd5c0a22451ca71aa175ff851058 |
work_keys_str_mv |
AT bouahamid spectraltheoryforstronglycontinuouscosine |
_version_ |
1718371763114475520 |