Spectral Theory For Strongly Continuous Cosine

Let (C(t))t∈ℝ be a strongly continuous cosine family and A be its infinitesimal generator. In this work, we prove that, if C(t) – cosh λt is semi-Fredholm (resp. semi-Browder, Drazin inversible, left essentially Drazin and right essentially Drazin invertible) operator and λt ∉ iπℤ, then A – λ2 is al...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Boua Hamid
Formato: article
Lenguaje:EN
Publicado: De Gruyter 2021
Materias:
Acceso en línea:https://doaj.org/article/5f90dd5c0a22451ca71aa175ff851058
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:5f90dd5c0a22451ca71aa175ff851058
record_format dspace
spelling oai:doaj.org-article:5f90dd5c0a22451ca71aa175ff8510582021-12-05T14:10:45ZSpectral Theory For Strongly Continuous Cosine2299-328210.1515/conop-2020-0110https://doaj.org/article/5f90dd5c0a22451ca71aa175ff8510582021-03-01T00:00:00Zhttps://doi.org/10.1515/conop-2020-0110https://doaj.org/toc/2299-3282Let (C(t))t∈ℝ be a strongly continuous cosine family and A be its infinitesimal generator. In this work, we prove that, if C(t) – cosh λt is semi-Fredholm (resp. semi-Browder, Drazin inversible, left essentially Drazin and right essentially Drazin invertible) operator and λt ∉ iπℤ, then A – λ2 is also. We show by counterexample that the converse is false in general.Boua HamidDe Gruyterarticlecosinesemi-fredholmdrazin invertiblesemi-browderleft essentially drazin invertibleright essentially drazin invertible47d0947a11MathematicsQA1-939ENConcrete Operators, Vol 8, Iss 1, Pp 40-47 (2021)
institution DOAJ
collection DOAJ
language EN
topic cosine
semi-fredholm
drazin invertible
semi-browder
left essentially drazin invertible
right essentially drazin invertible
47d09
47a11
Mathematics
QA1-939
spellingShingle cosine
semi-fredholm
drazin invertible
semi-browder
left essentially drazin invertible
right essentially drazin invertible
47d09
47a11
Mathematics
QA1-939
Boua Hamid
Spectral Theory For Strongly Continuous Cosine
description Let (C(t))t∈ℝ be a strongly continuous cosine family and A be its infinitesimal generator. In this work, we prove that, if C(t) – cosh λt is semi-Fredholm (resp. semi-Browder, Drazin inversible, left essentially Drazin and right essentially Drazin invertible) operator and λt ∉ iπℤ, then A – λ2 is also. We show by counterexample that the converse is false in general.
format article
author Boua Hamid
author_facet Boua Hamid
author_sort Boua Hamid
title Spectral Theory For Strongly Continuous Cosine
title_short Spectral Theory For Strongly Continuous Cosine
title_full Spectral Theory For Strongly Continuous Cosine
title_fullStr Spectral Theory For Strongly Continuous Cosine
title_full_unstemmed Spectral Theory For Strongly Continuous Cosine
title_sort spectral theory for strongly continuous cosine
publisher De Gruyter
publishDate 2021
url https://doaj.org/article/5f90dd5c0a22451ca71aa175ff851058
work_keys_str_mv AT bouahamid spectraltheoryforstronglycontinuouscosine
_version_ 1718371763114475520