Turning the blackbox into a glassbox: An explainable machine learning approach for understanding hospitality customer
Travel and hospitality industry are adopting high end technology to reach out their customers. New levels of disruption are being introduced using Artificial Intelligence and Machine Learning techniques of research. In the realm of physical and tangible aspects of service, since this sector have vas...
Guardado en:
Autores principales: | Ritu Sharma, Arpit Kumar, Cindy Chuah |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/5f940ef69e7d4012b67be0e2d867977e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Explainability for experts: A design framework for making algorithms supporting expert decisions more explainable
por: Auste Simkute, et al.
Publicado: (2021) -
Editorial: AI-Enabled Data Science for COVID-19
por: Da Yan, et al.
Publicado: (2021) -
Help Me Learn! Architecture and Strategies to Combine Recommendations and Active Learning in Manufacturing
por: Patrik Zajec, et al.
Publicado: (2021) -
Menentukan Customer Segment dan Segment Pasar UMKM (Foodendez) Dengan Metode Decision Tree
por: Baramukti Dewayana, et al.
Publicado: (2021) -
Klasifikasi Kebutuhan Jumlah Produk Makanan Customer Menggunakan K-Means Clustering dengan Optimasi Pusat Awal Cluster Algoritma Genetika
por: Yudi Istianto, et al.
Publicado: (2021)