An endophyte from salt-adapted Pokkali rice confers salt-tolerance to a salt-sensitive rice variety and targets a unique pattern of genes in its new host
Abstract Endophytes, both of bacterial and fungal origin, are ubiquitously present in all plants. While their origin and evolution are enigmatic, there is burgeoning literature on their role in promoting growth and stress responses in their hosts. We demonstrate that a salt-tolerant endophyte isolat...
Guardado en:
Autores principales: | , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/5fa57e1c34534ec1a69689fd42bc7b32 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:5fa57e1c34534ec1a69689fd42bc7b32 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:5fa57e1c34534ec1a69689fd42bc7b322021-12-02T14:28:21ZAn endophyte from salt-adapted Pokkali rice confers salt-tolerance to a salt-sensitive rice variety and targets a unique pattern of genes in its new host10.1038/s41598-020-59998-x2045-2322https://doaj.org/article/5fa57e1c34534ec1a69689fd42bc7b322020-02-01T00:00:00Zhttps://doi.org/10.1038/s41598-020-59998-xhttps://doaj.org/toc/2045-2322Abstract Endophytes, both of bacterial and fungal origin, are ubiquitously present in all plants. While their origin and evolution are enigmatic, there is burgeoning literature on their role in promoting growth and stress responses in their hosts. We demonstrate that a salt-tolerant endophyte isolated from salt-adapted Pokkali rice, a Fusarium sp., colonizes the salt-sensitive rice variety IR-64, promotes its growth under salt stress and confers salinity stress tolerance to its host. Physiological parameters, such as assimilation rate and chlorophyll stability index were higher in the colonized plants. Comparative transcriptome analysis revealed 1348 up-regulated and 1078 down-regulated genes in plants colonized by the endophyte. Analysis of the regulated genes by MapMan and interaction network programs showed that they are involved in both abiotic and biotic stress tolerance, and code for proteins involved in signal perception (leucine-rich repeat proteins, receptor-like kinases) and transduction (Ca2+ and calmodulin-binding proteins), transcription factors, secondary metabolism and oxidative stress scavenging. For nine genes, the data were validated by qPCR analysis in both roots and shoots. Taken together, these results show that salt-adapted Pokkali rice varieties are powerful sources for the identification of novel endophytes, which can be used to confer salinity tolerance to agriculturally important, but salt-sensitive rice varieties.Megha Hastantram Sampangi-RamaiahJagadheeshPrajjal DeyShridhar JambagiM. M. Vasantha KumariRalf OelmüllerKaraba N. NatarajaKundapura Venkataramana RavishankarG. RavikanthR. Uma ShaankerNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 10, Iss 1, Pp 1-14 (2020) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Megha Hastantram Sampangi-Ramaiah Jagadheesh Prajjal Dey Shridhar Jambagi M. M. Vasantha Kumari Ralf Oelmüller Karaba N. Nataraja Kundapura Venkataramana Ravishankar G. Ravikanth R. Uma Shaanker An endophyte from salt-adapted Pokkali rice confers salt-tolerance to a salt-sensitive rice variety and targets a unique pattern of genes in its new host |
description |
Abstract Endophytes, both of bacterial and fungal origin, are ubiquitously present in all plants. While their origin and evolution are enigmatic, there is burgeoning literature on their role in promoting growth and stress responses in their hosts. We demonstrate that a salt-tolerant endophyte isolated from salt-adapted Pokkali rice, a Fusarium sp., colonizes the salt-sensitive rice variety IR-64, promotes its growth under salt stress and confers salinity stress tolerance to its host. Physiological parameters, such as assimilation rate and chlorophyll stability index were higher in the colonized plants. Comparative transcriptome analysis revealed 1348 up-regulated and 1078 down-regulated genes in plants colonized by the endophyte. Analysis of the regulated genes by MapMan and interaction network programs showed that they are involved in both abiotic and biotic stress tolerance, and code for proteins involved in signal perception (leucine-rich repeat proteins, receptor-like kinases) and transduction (Ca2+ and calmodulin-binding proteins), transcription factors, secondary metabolism and oxidative stress scavenging. For nine genes, the data were validated by qPCR analysis in both roots and shoots. Taken together, these results show that salt-adapted Pokkali rice varieties are powerful sources for the identification of novel endophytes, which can be used to confer salinity tolerance to agriculturally important, but salt-sensitive rice varieties. |
format |
article |
author |
Megha Hastantram Sampangi-Ramaiah Jagadheesh Prajjal Dey Shridhar Jambagi M. M. Vasantha Kumari Ralf Oelmüller Karaba N. Nataraja Kundapura Venkataramana Ravishankar G. Ravikanth R. Uma Shaanker |
author_facet |
Megha Hastantram Sampangi-Ramaiah Jagadheesh Prajjal Dey Shridhar Jambagi M. M. Vasantha Kumari Ralf Oelmüller Karaba N. Nataraja Kundapura Venkataramana Ravishankar G. Ravikanth R. Uma Shaanker |
author_sort |
Megha Hastantram Sampangi-Ramaiah |
title |
An endophyte from salt-adapted Pokkali rice confers salt-tolerance to a salt-sensitive rice variety and targets a unique pattern of genes in its new host |
title_short |
An endophyte from salt-adapted Pokkali rice confers salt-tolerance to a salt-sensitive rice variety and targets a unique pattern of genes in its new host |
title_full |
An endophyte from salt-adapted Pokkali rice confers salt-tolerance to a salt-sensitive rice variety and targets a unique pattern of genes in its new host |
title_fullStr |
An endophyte from salt-adapted Pokkali rice confers salt-tolerance to a salt-sensitive rice variety and targets a unique pattern of genes in its new host |
title_full_unstemmed |
An endophyte from salt-adapted Pokkali rice confers salt-tolerance to a salt-sensitive rice variety and targets a unique pattern of genes in its new host |
title_sort |
endophyte from salt-adapted pokkali rice confers salt-tolerance to a salt-sensitive rice variety and targets a unique pattern of genes in its new host |
publisher |
Nature Portfolio |
publishDate |
2020 |
url |
https://doaj.org/article/5fa57e1c34534ec1a69689fd42bc7b32 |
work_keys_str_mv |
AT meghahastantramsampangiramaiah anendophytefromsaltadaptedpokkaliriceconferssalttolerancetoasaltsensitivericevarietyandtargetsauniquepatternofgenesinitsnewhost AT jagadheesh anendophytefromsaltadaptedpokkaliriceconferssalttolerancetoasaltsensitivericevarietyandtargetsauniquepatternofgenesinitsnewhost AT prajjaldey anendophytefromsaltadaptedpokkaliriceconferssalttolerancetoasaltsensitivericevarietyandtargetsauniquepatternofgenesinitsnewhost AT shridharjambagi anendophytefromsaltadaptedpokkaliriceconferssalttolerancetoasaltsensitivericevarietyandtargetsauniquepatternofgenesinitsnewhost AT mmvasanthakumari anendophytefromsaltadaptedpokkaliriceconferssalttolerancetoasaltsensitivericevarietyandtargetsauniquepatternofgenesinitsnewhost AT ralfoelmuller anendophytefromsaltadaptedpokkaliriceconferssalttolerancetoasaltsensitivericevarietyandtargetsauniquepatternofgenesinitsnewhost AT karabannataraja anendophytefromsaltadaptedpokkaliriceconferssalttolerancetoasaltsensitivericevarietyandtargetsauniquepatternofgenesinitsnewhost AT kundapuravenkataramanaravishankar anendophytefromsaltadaptedpokkaliriceconferssalttolerancetoasaltsensitivericevarietyandtargetsauniquepatternofgenesinitsnewhost AT gravikanth anendophytefromsaltadaptedpokkaliriceconferssalttolerancetoasaltsensitivericevarietyandtargetsauniquepatternofgenesinitsnewhost AT rumashaanker anendophytefromsaltadaptedpokkaliriceconferssalttolerancetoasaltsensitivericevarietyandtargetsauniquepatternofgenesinitsnewhost AT meghahastantramsampangiramaiah endophytefromsaltadaptedpokkaliriceconferssalttolerancetoasaltsensitivericevarietyandtargetsauniquepatternofgenesinitsnewhost AT jagadheesh endophytefromsaltadaptedpokkaliriceconferssalttolerancetoasaltsensitivericevarietyandtargetsauniquepatternofgenesinitsnewhost AT prajjaldey endophytefromsaltadaptedpokkaliriceconferssalttolerancetoasaltsensitivericevarietyandtargetsauniquepatternofgenesinitsnewhost AT shridharjambagi endophytefromsaltadaptedpokkaliriceconferssalttolerancetoasaltsensitivericevarietyandtargetsauniquepatternofgenesinitsnewhost AT mmvasanthakumari endophytefromsaltadaptedpokkaliriceconferssalttolerancetoasaltsensitivericevarietyandtargetsauniquepatternofgenesinitsnewhost AT ralfoelmuller endophytefromsaltadaptedpokkaliriceconferssalttolerancetoasaltsensitivericevarietyandtargetsauniquepatternofgenesinitsnewhost AT karabannataraja endophytefromsaltadaptedpokkaliriceconferssalttolerancetoasaltsensitivericevarietyandtargetsauniquepatternofgenesinitsnewhost AT kundapuravenkataramanaravishankar endophytefromsaltadaptedpokkaliriceconferssalttolerancetoasaltsensitivericevarietyandtargetsauniquepatternofgenesinitsnewhost AT gravikanth endophytefromsaltadaptedpokkaliriceconferssalttolerancetoasaltsensitivericevarietyandtargetsauniquepatternofgenesinitsnewhost AT rumashaanker endophytefromsaltadaptedpokkaliriceconferssalttolerancetoasaltsensitivericevarietyandtargetsauniquepatternofgenesinitsnewhost |
_version_ |
1718391254962667520 |