Superelastic and pH-Responsive Degradable Dendrimer Cryogels Prepared by Cryo-aza-Michael Addition Reaction

Abstract Dendrimers exhibit super atomistic features by virtue of their well-defined discrete quantized nanoscale structures. Here, we show that hyperbranched amine-terminated polyamidoamine (PAMAM) dendrimer G4.0 reacts with linear polyethylene glycol (PEG) diacrylate (575 g/mol) via the aza-Michae...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Juan Wang, Hu Yang
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2018
Materias:
R
Q
Acceso en línea:https://doaj.org/article/5fbd4b55166b41bdac08defd2a99f9dd
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract Dendrimers exhibit super atomistic features by virtue of their well-defined discrete quantized nanoscale structures. Here, we show that hyperbranched amine-terminated polyamidoamine (PAMAM) dendrimer G4.0 reacts with linear polyethylene glycol (PEG) diacrylate (575 g/mol) via the aza-Michael addition reaction at a subzero temperature (−20 °C), namely cryo-aza-Michael addition, to form a macroporous superelastic network, i.e., dendrimer cryogel. Dendrimer cryogels exhibit biologically relevant Young’s modulus, high compression elasticity and super resilience at ambient temperature. Furthermore, the dendrimer cryogels exhibit excellent rebound performance and do not show significant stress relaxation under cyclic deformation over a wide temperature range (−80 to 100 °C). The obtained dendrimer cryogels are stable at acidic pH but degrade quickly at physiological pH through self-triggered degradation. Taken together, dendrimer cryogels represent a new class of scaffolds with properties suitable for biomedical applications.