On singular solutions of the stationary Navier-Stokes system in power cusp domains
The boundary value problem for the steady Navier–Stokes system is considered in a 2D bounded domain with the boundary having a power cusp singularity at the point O. The case of a boundary value with a nonzero flow rate is studied. In this case there is a source/sink in O and the solution necessaril...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Vilnius Gediminas Technical University
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/5fc87dbb0e5643fb94b796be3bff3e2a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | The boundary value problem for the steady Navier–Stokes system is considered in a 2D bounded domain with the boundary having a power cusp singularity at the point O. The case of a boundary value with a nonzero flow rate is studied. In this case there is a source/sink in O and the solution necessarily has an infinite Dirichlet integral. The formal asymptotic expansion of the solution near the singular point is constructed and the existence of a solution having this asymptotic decomposition is proved. |
---|