On singular solutions of the stationary Navier-Stokes system in power cusp domains
The boundary value problem for the steady Navier–Stokes system is considered in a 2D bounded domain with the boundary having a power cusp singularity at the point O. The case of a boundary value with a nonzero flow rate is studied. In this case there is a source/sink in O and the solution necessaril...
Guardado en:
Autores principales: | Konstantinas Pileckas, Alicija Raciene |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Vilnius Gediminas Technical University
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/5fc87dbb0e5643fb94b796be3bff3e2a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Logarithmically improved regularity criteria for the Navier-Stokes equations in homogeneous Besov spaces
por: Nguyen Anh Dao, et al.
Publicado: (2021) -
Well-posedness analysis of a stationary Navier–Stokes hemivariational inequality
por: Min Ling, et al.
Publicado: (2021) -
Enhanced algorithms for solving the spectral discretization of the vorticity–velocity–pressure formulation of the Navier–Stokes problem
por: Mohamed Abdelwahed, et al.
Publicado: (2021) -
A subgrid stabilized method for Navier-Stokes equations with nonlinear slip boundary conditions
por: Xiaoxia Dai, et al.
Publicado: (2021) -
Long time decay for 3D Navier-Stokes equations in Fourier-Lei-Lin spaces
por: Jlali Lotfi
Publicado: (2021)