STM2209-STM2208 (opvAB): a phase variation locus of Salmonella enterica involved in control of O-antigen chain length.

STM2209 and STM2208 are contiguous loci annotated as putative protein-coding genes in the chromosome of Salmonella enterica. Lack of homologs in related Enterobacteria and low G+C content suggest that S. enterica may have acquired STM2209-STM2208 by horizontal transfer. STM2209 and STM2208 are co-tr...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Ignacio Cota, Anne Béatrice Blanc-Potard, Josep Casadesús
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2012
Materias:
R
Q
Acceso en línea:https://doaj.org/article/5fceee68925a461dbdf5a9d0c412f420
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:STM2209 and STM2208 are contiguous loci annotated as putative protein-coding genes in the chromosome of Salmonella enterica. Lack of homologs in related Enterobacteria and low G+C content suggest that S. enterica may have acquired STM2209-STM2208 by horizontal transfer. STM2209 and STM2208 are co-transcribed from a promoter upstream STM2209, and their products are inner (cytoplasmic) membrane proteins. Analysis with the bacterial adenylate cyclase two-hybrid system suggests that STM2209 and STM2208 may interact. Expression of STM2209-STM2208 is subjected to phase variation in wild type Salmonella enterica serovar Typhimurium. Switching frequencies in LB medium are 6.1×10(-5) (OFF→ON) and 3.7×10(-2) (ON→OFF) per cell and generation. Lack of DNA adenine methylation locks STM2209-STM2208 in the ON state, and lack of the LysR-type factor OxyR locks STM2209-STM2208 in the OFF state. OxyR-dependent activation of STM2209-STM2208 expression is independent of the oxidation state of OxyR. Salmonella cultures locked in the ON state show alteration of O-antigen length in the lipopolysaccharide, reduced absorption of bacteriophage P22, impaired resistance to serum, and reduced proliferation in macrophages. Phenotypic heterogeneity generated by STM2209-STM2208 phase variation may thus provide defense against phages. In turn, formation of a subpopulation unable to proliferate in macrophages may restrain Salmonella spread in animal organs, potentially contributing to successful infection.