Comparative Analysis of SVM, XGBoost and Neural Network on Hate Speech Classification
In social media, it is found that hate speech is conveyed in the form of text, images and videos, as a result it can provoke certain people to do things that are against the law and harm other person. Therefore, it is necessary to make early detection of hate speech by utilizing machine learning alg...
Guardado en:
Autor principal: | Suwarno Liang |
---|---|
Formato: | article |
Lenguaje: | ID |
Publicado: |
Ikatan Ahli Indormatika Indonesia
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/5fcf6029a49c4f0e852b30fcba14cc8f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Optimasi Parameter Support Vector Machine Berbasis Algoritma Firefly Pada Data Opini Film
por: Styawati, et al.
Publicado: (2021) -
Sentiment Analysis of Work from Home Activity using SVM with Randomized Search Optimization
por: Fatihah Rahmadayana, et al.
Publicado: (2021) -
The classification of EEG-based wink signals: A CWT-Transfer Learning pipeline
por: Jothi Letchumy Mahendra Kumar, et al.
Publicado: (2021) -
GENDER CLASSIFICATION ON SKELETAL REMAINS: EFFICIENCY OF METAHEURISTIC ALGORITHM METHOD AND OPTIMIZED BACK PROPAGATION NEURAL NETWORK
por: Nurul Liyana Hairuddin, et al.
Publicado: (2020) -
Emotion Classification in Spanish: Exploring the Hard Classes
por: Aiala Rosá, et al.
Publicado: (2021)