Comparative Analysis of SVM, XGBoost and Neural Network on Hate Speech Classification
In social media, it is found that hate speech is conveyed in the form of text, images and videos, as a result it can provoke certain people to do things that are against the law and harm other person. Therefore, it is necessary to make early detection of hate speech by utilizing machine learning alg...
Enregistré dans:
Auteur principal: | Suwarno Liang |
---|---|
Format: | article |
Langue: | ID |
Publié: |
Ikatan Ahli Indormatika Indonesia
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/5fcf6029a49c4f0e852b30fcba14cc8f |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Optimasi Parameter Support Vector Machine Berbasis Algoritma Firefly Pada Data Opini Film
par: Styawati, et autres
Publié: (2021) -
Sentiment Analysis of Work from Home Activity using SVM with Randomized Search Optimization
par: Fatihah Rahmadayana, et autres
Publié: (2021) -
The classification of EEG-based wink signals: A CWT-Transfer Learning pipeline
par: Jothi Letchumy Mahendra Kumar, et autres
Publié: (2021) -
GENDER CLASSIFICATION ON SKELETAL REMAINS: EFFICIENCY OF METAHEURISTIC ALGORITHM METHOD AND OPTIMIZED BACK PROPAGATION NEURAL NETWORK
par: Nurul Liyana Hairuddin, et autres
Publié: (2020) -
Emotion Classification in Spanish: Exploring the Hard Classes
par: Aiala Rosá, et autres
Publié: (2021)