Radioluminescence Response of Ce-, Cu-, and Gd-Doped Silica Glasses for Dosimetry of Pulsed Electron Beams

Radiation-induced emission of doped sol-gel silica glass samples was investigated under a pulsed 20-MeV electron beam. The studied samples were drawn rods doped with cerium, copper, or gadolinium ions, which were connected to multimode pure-silica core fibers to transport the induced luminescence fr...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Daniel Söderström, Heikki Kettunen, Adriana Morana, Arto Javanainen, Youcef Ouerdane, Hicham El Hamzaoui, Bruno Capoen, Géraud Bouwmans, Mohamed Bouazaoui, Sylvain Girard
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/5fd020c3eb1748a485871311abf01c29
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Radiation-induced emission of doped sol-gel silica glass samples was investigated under a pulsed 20-MeV electron beam. The studied samples were drawn rods doped with cerium, copper, or gadolinium ions, which were connected to multimode pure-silica core fibers to transport the induced luminescence from the irradiation area to a signal readout system. The luminescence pulses in the samples induced by the electron bunches were studied as a function of deposited dose per electron bunch. All the investigated samples were found to have a linear response in terms of luminescence as a function of electron bunch sizes between <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mn>10</mn><mrow><mo>−</mo><mn>5</mn></mrow></msup></semantics></math></inline-formula> Gy/bunch and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1.5</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>2</mn></mrow></msup></mrow></semantics></math></inline-formula> Gy/bunch. The presented results show that these types of doped silica rods can be used for monitoring a pulsed electron beam, as well as to evaluate the dose deposited by the individual electron bunches. The electron accelerator used in the experiment was a medical type used for radiation therapy treatments, and these silica rod samples show high potential for dosimetry in radiotherapy contexts.