Predicting Breast Cancer Gene Expression Signature by Applying Deep Convolutional Neural Networks From Unannotated Pathological Images
We proposed a highly versatile two-step transfer learning pipeline for predicting the gene signature defining the intrinsic breast cancer subtypes using unannotated pathological images. Deciphering breast cancer molecular subtypes by deep learning approaches could provide a convenient and efficient...
Guardado en:
Autores principales: | Nam Nhut Phan, Chi-Cheng Huang, Ling-Ming Tseng, Eric Y. Chuang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/5fd822eabb5f4ec8b5c3953244c24d43 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
First Nationwide Molecular Screening Program in Spain for Patients With Advanced Breast Cancer: Results From the AGATA SOLTI-1301 Study
por: Sonia Pernas, et al.
Publicado: (2021) -
MicroRNAs in Molecular Classification and Pathogenesis of Breast Tumors
por: Vinitha Richard, et al.
Publicado: (2021) -
Molecular Profiling of Endometrial Cancer: An Exploratory Study in Aotearoa, New Zealand
por: Claire E. Henry, et al.
Publicado: (2021) -
Decoding the molecular subtypes of breast cancer seen on multimodal ultrasound images using an assembled convolutional neural network model: A prospective and multicentre study
por: Bo-Yang Zhou, et al.
Publicado: (2021) -
A Fast Lightweight 3D Separable Convolutional Neural Network With Multi-Input Multi-Output for Moving Object Detection
por: Bingxin Hou, et al.
Publicado: (2021)