Hybrid-Based Analysis Impact on Ransomware Detection for Android Systems
Android ransomware is one of the most threatening attacks that is increasing at an alarming rate. Ransomware attacks usually target Android users by either locking their devices or encrypting their data files and then requesting them to pay money to unlock the devices or recover the files back. Exis...
Guardado en:
Autores principales: | Rana Almohaini, Iman Almomani, Aala AlKhayer |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/600012a61c02420da1ffd3898f160db1 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Ransomware Detection System Based on Machine Learning
por: Omar Ahmed, et al.
Publicado: (2021) -
DroidEnsemble: Detecting Android Malicious Applications With Ensemble of String and Structural Static Features
por: Wei Wang, et al.
Publicado: (2018) -
Android Malware Detection Using Machine Learning with Feature Selection Based on the Genetic Algorithm
por: Jaehyeong Lee, et al.
Publicado: (2021) -
Asynchronous Peer-to-Peer Federated Capability-Based Targeted Ransomware Detection Model for Industrial IoT
por: Muna Al-Hawawreh, et al.
Publicado: (2021) -
SAMLDroid: A Static Taint Analysis and Machine Learning Combined High-Accuracy Method for Identifying Android Apps with Location Privacy Leakage Risks
por: Guangwu Hu, et al.
Publicado: (2021)