Explainable machine learning can outperform Cox regression predictions and provide insights in breast cancer survival
Abstract Cox Proportional Hazards (CPH) analysis is the standard for survival analysis in oncology. Recently, several machine learning (ML) techniques have been adapted for this task. Although they have shown to yield results at least as good as classical methods, they are often disregarded because...
Guardado en:
Autores principales: | Arturo Moncada-Torres, Marissa C. van Maaren, Mathijs P. Hendriks, Sabine Siesling, Gijs Geleijnse |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/60066ac6361b4955b3637a97e5f0b826 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Logistic model outperforms allometric regression to estimate biomass of xerophytic shrubs
por: Jiemin Ma, et al.
Publicado: (2021) -
Extortion can outperform generosity in the iterated prisoner’s dilemma
por: Zhijian Wang, et al.
Publicado: (2016) -
Approximation of the Cox survival regression model by MCMC Bayesian Hierarchical Poisson modelling of factors associated with childhood mortality in Nigeria
por: A. F. Fagbamigbe, et al.
Publicado: (2021) -
Forecasting stock returns on the Amman Stock Exchange: Do neural networks outperform linear regressions?
por: Abdel Razzaq Al Rababa’a, et al.
Publicado: (2021) -
Sample-based approach can outperform the classical dynamical analysis - experimental confirmation of the basin stability method
por: P. Brzeski, et al.
Publicado: (2017)