Explainable machine learning can outperform Cox regression predictions and provide insights in breast cancer survival

Abstract Cox Proportional Hazards (CPH) analysis is the standard for survival analysis in oncology. Recently, several machine learning (ML) techniques have been adapted for this task. Although they have shown to yield results at least as good as classical methods, they are often disregarded because...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Arturo Moncada-Torres, Marissa C. van Maaren, Mathijs P. Hendriks, Sabine Siesling, Gijs Geleijnse
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/60066ac6361b4955b3637a97e5f0b826
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

Ejemplares similares