Numerical optimization of microfluidic vortex shedding for genome editing T cells with Cas9

Abstract Microfluidic vortex shedding (µVS) can rapidly deliver mRNA to T cells with high yield and minimal perturbation of the cell state. The mechanistic underpinning of µVS intracellular delivery remains undefined and µVS-Cas9 genome editing requires further studies. Herein, we evaluated a series...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Justin A. Jarrell, Brandon J. Sytsma, Leah H. Wilson, Fong L. Pan, Katherine H. W. J. Lau, Giles T. S. Kirby, Adrian A. Lievano, Ryan S. Pawell
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/600c810d0b0d45d6a04aaa482fec0696
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:600c810d0b0d45d6a04aaa482fec0696
record_format dspace
spelling oai:doaj.org-article:600c810d0b0d45d6a04aaa482fec06962021-12-02T18:25:04ZNumerical optimization of microfluidic vortex shedding for genome editing T cells with Cas910.1038/s41598-021-91307-y2045-2322https://doaj.org/article/600c810d0b0d45d6a04aaa482fec06962021-06-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-91307-yhttps://doaj.org/toc/2045-2322Abstract Microfluidic vortex shedding (µVS) can rapidly deliver mRNA to T cells with high yield and minimal perturbation of the cell state. The mechanistic underpinning of µVS intracellular delivery remains undefined and µVS-Cas9 genome editing requires further studies. Herein, we evaluated a series of µVS devices containing splitter plates to attenuate vortex shedding and understand the contribution of computed force and frequency on efficiency and viability. We then selected a µVS design to knockout the expression of the endogenous T cell receptor in primary human T cells via delivery of Cas9 ribonucleoprotein (RNP) with and without brief exposure to an electric field (eµVS). µVS alone resulted in an equivalent yield of genome-edited T cells relative to electroporation with improved cell quality. A 1.8-fold increase in editing efficiency was demonstrated with eµVS with negligible impact on cell viability. Herein, we demonstrate efficient processing of 5 × 106 cells suspend in 100 µl of cGMP OptiMEM in under 5 s, with the capacity of a single device to process between 106 to 108 in 1 to 30 s. Cumulatively, these results demonstrate the rapid and robust utility of µVS and eµVS for genome editing human primary T cells with Cas9 RNPs.Justin A. JarrellBrandon J. SytsmaLeah H. WilsonFong L. PanKatherine H. W. J. LauGiles T. S. KirbyAdrian A. LievanoRyan S. PawellNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-13 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Justin A. Jarrell
Brandon J. Sytsma
Leah H. Wilson
Fong L. Pan
Katherine H. W. J. Lau
Giles T. S. Kirby
Adrian A. Lievano
Ryan S. Pawell
Numerical optimization of microfluidic vortex shedding for genome editing T cells with Cas9
description Abstract Microfluidic vortex shedding (µVS) can rapidly deliver mRNA to T cells with high yield and minimal perturbation of the cell state. The mechanistic underpinning of µVS intracellular delivery remains undefined and µVS-Cas9 genome editing requires further studies. Herein, we evaluated a series of µVS devices containing splitter plates to attenuate vortex shedding and understand the contribution of computed force and frequency on efficiency and viability. We then selected a µVS design to knockout the expression of the endogenous T cell receptor in primary human T cells via delivery of Cas9 ribonucleoprotein (RNP) with and without brief exposure to an electric field (eµVS). µVS alone resulted in an equivalent yield of genome-edited T cells relative to electroporation with improved cell quality. A 1.8-fold increase in editing efficiency was demonstrated with eµVS with negligible impact on cell viability. Herein, we demonstrate efficient processing of 5 × 106 cells suspend in 100 µl of cGMP OptiMEM in under 5 s, with the capacity of a single device to process between 106 to 108 in 1 to 30 s. Cumulatively, these results demonstrate the rapid and robust utility of µVS and eµVS for genome editing human primary T cells with Cas9 RNPs.
format article
author Justin A. Jarrell
Brandon J. Sytsma
Leah H. Wilson
Fong L. Pan
Katherine H. W. J. Lau
Giles T. S. Kirby
Adrian A. Lievano
Ryan S. Pawell
author_facet Justin A. Jarrell
Brandon J. Sytsma
Leah H. Wilson
Fong L. Pan
Katherine H. W. J. Lau
Giles T. S. Kirby
Adrian A. Lievano
Ryan S. Pawell
author_sort Justin A. Jarrell
title Numerical optimization of microfluidic vortex shedding for genome editing T cells with Cas9
title_short Numerical optimization of microfluidic vortex shedding for genome editing T cells with Cas9
title_full Numerical optimization of microfluidic vortex shedding for genome editing T cells with Cas9
title_fullStr Numerical optimization of microfluidic vortex shedding for genome editing T cells with Cas9
title_full_unstemmed Numerical optimization of microfluidic vortex shedding for genome editing T cells with Cas9
title_sort numerical optimization of microfluidic vortex shedding for genome editing t cells with cas9
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/600c810d0b0d45d6a04aaa482fec0696
work_keys_str_mv AT justinajarrell numericaloptimizationofmicrofluidicvortexsheddingforgenomeeditingtcellswithcas9
AT brandonjsytsma numericaloptimizationofmicrofluidicvortexsheddingforgenomeeditingtcellswithcas9
AT leahhwilson numericaloptimizationofmicrofluidicvortexsheddingforgenomeeditingtcellswithcas9
AT fonglpan numericaloptimizationofmicrofluidicvortexsheddingforgenomeeditingtcellswithcas9
AT katherinehwjlau numericaloptimizationofmicrofluidicvortexsheddingforgenomeeditingtcellswithcas9
AT gilestskirby numericaloptimizationofmicrofluidicvortexsheddingforgenomeeditingtcellswithcas9
AT adrianalievano numericaloptimizationofmicrofluidicvortexsheddingforgenomeeditingtcellswithcas9
AT ryanspawell numericaloptimizationofmicrofluidicvortexsheddingforgenomeeditingtcellswithcas9
_version_ 1718378041754779648