A Simultaneous Fault Diagnosis Method Based on Cohesion Evaluation and Improved BP-MLL for Rotating Machinery
In this paper, an improved simultaneous fault diagnostic algorithm with cohesion-based feature selection and improved backpropagation multilabel learning (BP-MLL) classification is proposed to localize and diagnose different simultaneous faults on gearbox and bearings in rotating machinery. Cohesion...
Guardado en:
Autores principales: | Yixuan Zhang, Rui Yang, Mengjie Huang, Yu Han, Yiqi Wang, Yun Di, Dongke Su, Qidong Lu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Hindawi Limited
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/60221ca5fe244bedb8183406542c0def |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Rotating machinery fault diagnosis based on a novel lightweight convolutional neural network.
por: Jing Yan, et al.
Publicado: (2021) -
Research on vibration monitoring and fault diagnosis of rotating machinery based on internet of things technology
por: Zhang Xiaoran, et al.
Publicado: (2021) -
Fault Diagnosis Based on BP Neural Network Optimized by Beetle Algorithm
por: Maohua Xiao, et al.
Publicado: (2021) -
A New Transferable Fault Diagnosis Approach of Rotating Machinery Based on Deep Autoencoder and Dominant Features Selection under Different Operating Conditions
por: Fei Dong, et al.
Publicado: (2021) - International journal of rotating machinery