Space: The Re-Visioning Frontier of Biological Image Analysis with Graph Theory, Computational Geometry, and Spatial Statistics
Every biological image contains quantitative data that can be used to test hypotheses about how patterns were formed, what entities are associated with one another, and whether standard mathematical methods inform our understanding of biological phenomena. In particular, spatial point distributions...
Enregistré dans:
Auteurs principaux: | John R. Jungck, Michael J. Pelsmajer, Camron Chappel, Dylan Taylor |
---|---|
Format: | article |
Langue: | EN |
Publié: |
MDPI AG
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/602b9fc6624440328a791ed0f285c26d |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Combined Voronoi-FDEM approach for modelling post-fracture response of laminated tempered glass
par: Xing-er Wang, et autres
Publié: (2020) -
SD-Prime cordial labeling of alternate k-polygonal snake of various types
par: Prajapati,U. M., et autres
Publié: (2021) -
Computational geometry theory and applications.
Publié: (1991) -
Advances in geometry
Publié: (2001) - Journal of graph theory