Background stimulus delays detection of target stimulus in a familiar odor–odor combination
Abstract Familiarity of odor–odor combinations is enhanced through food intake in daily life. As familiarity increases, the perceptual boundary between two odors may become ambiguous; therefore, we hypothesized that exposure to one odor would delay detection of the other in a high-familiarity combin...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/602f1658522f4d9691157fbbe7f048cc |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Abstract Familiarity of odor–odor combinations is enhanced through food intake in daily life. As familiarity increases, the perceptual boundary between two odors may become ambiguous; therefore, we hypothesized that exposure to one odor would delay detection of the other in a high-familiarity combination but not in a low-familiarity combination. To test this hypothesis, we measured the speed of odor detection using two types of background stimuli (black tea odor and odorless air) and two types of target stimuli (lemon odor and almond odor). For Japanese participants, the combination of black tea and lemon odor has high familiarity, whereas the combination of black tea and almond odors has low familiarity. Reaction time for detection of target stimulus was measured by inserting a pulsed target stimulus into the flow of the background stimulus (i.e., replacing the background stimulus with the target stimulus for a short time). Reaction time for detection of lemon odor was significantly longer under the black tea odor condition than under the odorless air condition. Reaction time for detection of almond odor was similar between the black tea odor and odorless air conditions. These results are in line with the hypothesis that familiarity of an odor–odor combination affects odor detection speed. Further investigations are required to reach more robust conclusions. |
---|