Engineering Biodegradable and Biocompatible Bio-ionic Liquid Conjugated Hydrogels with Tunable Conductivity and Mechanical Properties
Abstract Conventional methods to engineer electroconductive hydrogels (ECHs) through the incorporation of conductive nanomaterials and polymers exhibit major technical limitations. These are mainly associated with the cytotoxicity, as well as poor solubility, processability, and biodegradability of...
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/602fc84e3a7c4dd59a731875d951669a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:602fc84e3a7c4dd59a731875d951669a |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:602fc84e3a7c4dd59a731875d951669a2021-12-02T15:05:21ZEngineering Biodegradable and Biocompatible Bio-ionic Liquid Conjugated Hydrogels with Tunable Conductivity and Mechanical Properties10.1038/s41598-017-04280-w2045-2322https://doaj.org/article/602fc84e3a7c4dd59a731875d951669a2017-06-01T00:00:00Zhttps://doi.org/10.1038/s41598-017-04280-whttps://doaj.org/toc/2045-2322Abstract Conventional methods to engineer electroconductive hydrogels (ECHs) through the incorporation of conductive nanomaterials and polymers exhibit major technical limitations. These are mainly associated with the cytotoxicity, as well as poor solubility, processability, and biodegradability of their components. Here, we describe the engineering of a new class of ECHs through the functionalization of non-conductive polymers with a conductive choline-based bio-ionic liquid (Bio-IL). Bio-IL conjugated hydrogels exhibited a wide range of highly tunable physical properties, remarkable in vitro and in vivo biocompatibility, and high electrical conductivity without the need for additional conductive components. The engineered hydrogels could support the growth and function of primary cardiomyocytes in both two dimentinal (2D) and three dimensional (3D) cultures in vitro. Furthermore, they were shown to be efficiently biodegraded and possess low immunogenicity when implanted subcutaneously in rats. Taken together, our results suggest that Bio-IL conjugated hydrogels could be implemented and readily tailored to different biomedical and tissue engineering applications.Iman NoshadiBrian W. WalkerRoberto Portillo-LaraEhsan Shirzaei SaniNayara GomesMohammad Reza AziziyanNasim AnnabiNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 7, Iss 1, Pp 1-18 (2017) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Iman Noshadi Brian W. Walker Roberto Portillo-Lara Ehsan Shirzaei Sani Nayara Gomes Mohammad Reza Aziziyan Nasim Annabi Engineering Biodegradable and Biocompatible Bio-ionic Liquid Conjugated Hydrogels with Tunable Conductivity and Mechanical Properties |
description |
Abstract Conventional methods to engineer electroconductive hydrogels (ECHs) through the incorporation of conductive nanomaterials and polymers exhibit major technical limitations. These are mainly associated with the cytotoxicity, as well as poor solubility, processability, and biodegradability of their components. Here, we describe the engineering of a new class of ECHs through the functionalization of non-conductive polymers with a conductive choline-based bio-ionic liquid (Bio-IL). Bio-IL conjugated hydrogels exhibited a wide range of highly tunable physical properties, remarkable in vitro and in vivo biocompatibility, and high electrical conductivity without the need for additional conductive components. The engineered hydrogels could support the growth and function of primary cardiomyocytes in both two dimentinal (2D) and three dimensional (3D) cultures in vitro. Furthermore, they were shown to be efficiently biodegraded and possess low immunogenicity when implanted subcutaneously in rats. Taken together, our results suggest that Bio-IL conjugated hydrogels could be implemented and readily tailored to different biomedical and tissue engineering applications. |
format |
article |
author |
Iman Noshadi Brian W. Walker Roberto Portillo-Lara Ehsan Shirzaei Sani Nayara Gomes Mohammad Reza Aziziyan Nasim Annabi |
author_facet |
Iman Noshadi Brian W. Walker Roberto Portillo-Lara Ehsan Shirzaei Sani Nayara Gomes Mohammad Reza Aziziyan Nasim Annabi |
author_sort |
Iman Noshadi |
title |
Engineering Biodegradable and Biocompatible Bio-ionic Liquid Conjugated Hydrogels with Tunable Conductivity and Mechanical Properties |
title_short |
Engineering Biodegradable and Biocompatible Bio-ionic Liquid Conjugated Hydrogels with Tunable Conductivity and Mechanical Properties |
title_full |
Engineering Biodegradable and Biocompatible Bio-ionic Liquid Conjugated Hydrogels with Tunable Conductivity and Mechanical Properties |
title_fullStr |
Engineering Biodegradable and Biocompatible Bio-ionic Liquid Conjugated Hydrogels with Tunable Conductivity and Mechanical Properties |
title_full_unstemmed |
Engineering Biodegradable and Biocompatible Bio-ionic Liquid Conjugated Hydrogels with Tunable Conductivity and Mechanical Properties |
title_sort |
engineering biodegradable and biocompatible bio-ionic liquid conjugated hydrogels with tunable conductivity and mechanical properties |
publisher |
Nature Portfolio |
publishDate |
2017 |
url |
https://doaj.org/article/602fc84e3a7c4dd59a731875d951669a |
work_keys_str_mv |
AT imannoshadi engineeringbiodegradableandbiocompatiblebioionicliquidconjugatedhydrogelswithtunableconductivityandmechanicalproperties AT brianwwalker engineeringbiodegradableandbiocompatiblebioionicliquidconjugatedhydrogelswithtunableconductivityandmechanicalproperties AT robertoportillolara engineeringbiodegradableandbiocompatiblebioionicliquidconjugatedhydrogelswithtunableconductivityandmechanicalproperties AT ehsanshirzaeisani engineeringbiodegradableandbiocompatiblebioionicliquidconjugatedhydrogelswithtunableconductivityandmechanicalproperties AT nayaragomes engineeringbiodegradableandbiocompatiblebioionicliquidconjugatedhydrogelswithtunableconductivityandmechanicalproperties AT mohammadrezaaziziyan engineeringbiodegradableandbiocompatiblebioionicliquidconjugatedhydrogelswithtunableconductivityandmechanicalproperties AT nasimannabi engineeringbiodegradableandbiocompatiblebioionicliquidconjugatedhydrogelswithtunableconductivityandmechanicalproperties |
_version_ |
1718388833058291712 |