Factors controlling the mechanical properties degradation and permeability of coal subjected to liquid nitrogen freeze-thaw
Abstract Freeze-thaw induced fracturing coal by liquid nitrogen (LN2) injection exerts a significant positive effect on the fracture permeability enhancement of the coal reservoir. To evaluate the different freeze-thaw variables which modify the mechanical properties of treated coals, the effects of...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/603e0168736341c89936a4393bee0234 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:603e0168736341c89936a4393bee0234 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:603e0168736341c89936a4393bee02342021-12-02T12:30:12ZFactors controlling the mechanical properties degradation and permeability of coal subjected to liquid nitrogen freeze-thaw10.1038/s41598-017-04019-72045-2322https://doaj.org/article/603e0168736341c89936a4393bee02342017-06-01T00:00:00Zhttps://doi.org/10.1038/s41598-017-04019-7https://doaj.org/toc/2045-2322Abstract Freeze-thaw induced fracturing coal by liquid nitrogen (LN2) injection exerts a significant positive effect on the fracture permeability enhancement of the coal reservoir. To evaluate the different freeze-thaw variables which modify the mechanical properties of treated coals, the effects of freezing time, number of freeze-thaw cycles, and the moisture content of coal were studied using combined uniaxial compression and acoustic emission testing systems. Freezing the samples with LN2 for increasing amounts of time degraded the strength of coal within a certain limit. Comparison to freezing time, freeze-thaw cycling caused much more damage to the coal strength. The third variable studied, freeze-thaw damage resulting from high moisture content, was restricted by the coal’s moisture saturation limit. Based on the experimental results, equations describing the amount of damage caused by each of the different freeze-thaw variables were empirically regressed. Additionally, by using the ultrasonic wave detection method and fractal dimension analyses, how freeze-thaw induced fractures in the coal was quantitatively analyzed. The results also showed that the velocity of ultrasonic waves had a negative correlation with coal permeability, and the freeze-thaw cycles significantly augment the permeability of frozen-thawed coal masses.Lei QinCheng ZhaiShimin LiuJizhao XuNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 7, Iss 1, Pp 1-11 (2017) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Lei Qin Cheng Zhai Shimin Liu Jizhao Xu Factors controlling the mechanical properties degradation and permeability of coal subjected to liquid nitrogen freeze-thaw |
description |
Abstract Freeze-thaw induced fracturing coal by liquid nitrogen (LN2) injection exerts a significant positive effect on the fracture permeability enhancement of the coal reservoir. To evaluate the different freeze-thaw variables which modify the mechanical properties of treated coals, the effects of freezing time, number of freeze-thaw cycles, and the moisture content of coal were studied using combined uniaxial compression and acoustic emission testing systems. Freezing the samples with LN2 for increasing amounts of time degraded the strength of coal within a certain limit. Comparison to freezing time, freeze-thaw cycling caused much more damage to the coal strength. The third variable studied, freeze-thaw damage resulting from high moisture content, was restricted by the coal’s moisture saturation limit. Based on the experimental results, equations describing the amount of damage caused by each of the different freeze-thaw variables were empirically regressed. Additionally, by using the ultrasonic wave detection method and fractal dimension analyses, how freeze-thaw induced fractures in the coal was quantitatively analyzed. The results also showed that the velocity of ultrasonic waves had a negative correlation with coal permeability, and the freeze-thaw cycles significantly augment the permeability of frozen-thawed coal masses. |
format |
article |
author |
Lei Qin Cheng Zhai Shimin Liu Jizhao Xu |
author_facet |
Lei Qin Cheng Zhai Shimin Liu Jizhao Xu |
author_sort |
Lei Qin |
title |
Factors controlling the mechanical properties degradation and permeability of coal subjected to liquid nitrogen freeze-thaw |
title_short |
Factors controlling the mechanical properties degradation and permeability of coal subjected to liquid nitrogen freeze-thaw |
title_full |
Factors controlling the mechanical properties degradation and permeability of coal subjected to liquid nitrogen freeze-thaw |
title_fullStr |
Factors controlling the mechanical properties degradation and permeability of coal subjected to liquid nitrogen freeze-thaw |
title_full_unstemmed |
Factors controlling the mechanical properties degradation and permeability of coal subjected to liquid nitrogen freeze-thaw |
title_sort |
factors controlling the mechanical properties degradation and permeability of coal subjected to liquid nitrogen freeze-thaw |
publisher |
Nature Portfolio |
publishDate |
2017 |
url |
https://doaj.org/article/603e0168736341c89936a4393bee0234 |
work_keys_str_mv |
AT leiqin factorscontrollingthemechanicalpropertiesdegradationandpermeabilityofcoalsubjectedtoliquidnitrogenfreezethaw AT chengzhai factorscontrollingthemechanicalpropertiesdegradationandpermeabilityofcoalsubjectedtoliquidnitrogenfreezethaw AT shiminliu factorscontrollingthemechanicalpropertiesdegradationandpermeabilityofcoalsubjectedtoliquidnitrogenfreezethaw AT jizhaoxu factorscontrollingthemechanicalpropertiesdegradationandpermeabilityofcoalsubjectedtoliquidnitrogenfreezethaw |
_version_ |
1718394400714784768 |