Online Machine Learning of Available Capacity for Vehicle-to-Grid Services during the Coronavirus Pandemic
Vehicle-to-grid services make use of the aggregated capacity available from a fleet of vehicles to participate in energy markets, help integrate renewable energy in the grid and balance energy use. In this paper, the critical components of such a service are described in the context of a commercial...
Enregistré dans:
Auteurs principaux: | Rob Shipman, Rebecca Roberts, Julie Waldron, Chris Rimmer, Lucelia Rodrigues, Mark Gillott |
---|---|
Format: | article |
Langue: | EN |
Publié: |
MDPI AG
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/6040bb08594d4455ae4be6d1c9ee848b |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Meticulously Intelligent Identification System for Smart Grid Network Stability to Optimize Risk Management
par: Qasem Abu Al-Haija, et autres
Publié: (2021) -
Cost-Optimized Microgrid Coalitions Using Bayesian Reinforcement Learning
par: Mohammad Sadeghi, et autres
Publié: (2021) -
A Survey Data Approach for Determining the Probability Values of Vehicle-to-Grid Service Provision
par: Krzysztof Zagrajek
Publié: (2021) -
Reinforcement Learning Approaches to Optimal Market Making
par: Bruno Gašperov, et autres
Publié: (2021) -
Optimising Electrical Power Supply Sustainability Using a Grid-Connected Hybrid Renewable Energy System—An NHS Hospital Case Study
par: Fadi Kahwash, et autres
Publié: (2021)