Drug–target interaction prediction using unifying of graph regularized nuclear norm with bilinear factorization
Abstract Background Wet-lab experiments for identification of interactions between drugs and target proteins are time-consuming, costly and labor-intensive. The use of computational prediction of drug–target interactions (DTIs), which is one of the significant points in drug discovery, has been cons...
Guardado en:
Autores principales: | Ali Ghanbari Sorkhi, Zahra Abbasi, Majid Iranpour Mobarakeh, Jamshid Pirgazi |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
BMC
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/60571230ee8a46e59cc08fa5b83be312 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
NeuRank: learning to rank with neural networks for drug–target interaction prediction
por: Xiujin Wu, et al.
Publicado: (2021) -
Understanding Human-Virus Protein-Protein Interactions Using a Human Protein Complex-Based Analysis Framework
por: Shiping Yang, et al.
Publicado: (2019) -
Editorial: Protein–Protein Interactions: Drug Discovery for the Future
por: Simona Rapposelli, et al.
Publicado: (2021) -
Jugos de fruta y productos herbáceos como perpetradores de interacciones farmacocinéticas mediadas por enzimas metabolizadoras y transportadores de membrana. Relevancia en clínica
por: Cortés,Matías, et al.
Publicado: (2021) - Drug discoveries & therapeutics