Exploring the mechanism of Yixinyin for myocardial infarction by weighted co-expression network and molecular docking

Abstract Yixinyin, the traditional Chinese medicine, has the effects of replenishing righteous qi, and promoting blood circulation to eliminate blood stagnation. It is often used to treat patients with acute myocardial infarction (MI). The purpose of our study is to explore the key components and ta...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Mengqi Huo, Lina Ma, Guoguo Liu
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/606679bdf95b4df8b2076a214e3702cc
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract Yixinyin, the traditional Chinese medicine, has the effects of replenishing righteous qi, and promoting blood circulation to eliminate blood stagnation. It is often used to treat patients with acute myocardial infarction (MI). The purpose of our study is to explore the key components and targets of Yixinyin in the treatment of MI. In this study, we analyzed gene expression data and clinical information from 248 samples of MI patients with the GSE34198, GSE29111 and GSE66360 data sets. By constructing a weighted gene co-expression network, gene modules related to myocardial infarction are obtained. These modules can be mapped in Yixinyin PPI network. By integrating differential genes of healthy/MI and unstable angina/MI, key targets of Yixinyin for the treatment of myocardial infarction were screened. We validated the key objectives with external data sets. GSEA analysis is used to identify the biological processes involved in key targets. Through molecular docking screening, active components that can combine with key targets in Yixinyin were obtained. In the treatment of myocardial infarction, we have obtained key targets of Yixinyin, which are ALDH2, C5AR1, FOS, IL1B, TLR2, TXNRD1. External data sets prove that they behave differently in the healthy and MI (P < 0.05). GSEA enrichment analysis revealed that they are mainly involved in pathways associated with myocardial infarction, such as viral myocarditis, VEGF signaling pathway and type I diabetes mellitus. The docking results showed that the components that can be combined with key targets in YixinYin are Supraene, Prostaglandin B1, isomucronulatol-7,2′-di-O-glucosiole, angusifolin B, Linolenic acid ethyl ester, and Mandenol. For that matter, they may be active ingredients of Yixinyin in treating MI. These findings provide a basis for the preliminary research of myocardial infarction therapy in traditional Chinese medicine and provide ideas for the design of related drugs.