Predicting the propensity for thermally activated β events in metallic glasses via interpretable machine learning
Abstract The elementary excitations in metallic glasses (MGs), i.e., β processes that involve hopping between nearby sub-basins, underlie many unusual properties of the amorphous alloys. A high-efficacy prediction of the propensity for those activated processes from solely the atomic positions, howe...
Guardado en:
Autores principales: | Qi Wang, Jun Ding, Longfei Zhang, Evgeny Podryabinkin, Alexander Shapeev, Evan Ma |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/607c7977330949b6958952bb11789513 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Interpretable machine-learning strategy for soft-magnetic property and thermal stability in Fe-based metallic glasses
por: Zhichao Lu, et al.
Publicado: (2020) -
Machine learning for deep elastic strain engineering of semiconductor electronic band structure and effective mass
por: Evgenii Tsymbalov, et al.
Publicado: (2021) -
Machine-learned interatomic potentials for alloys and alloy phase diagrams
por: Conrad W. Rosenbrock, et al.
Publicado: (2021) -
Rational design of chemically complex metallic glasses by hybrid modeling guided machine learning
por: Z. Q. Zhou, et al.
Publicado: (2021) -
Thermal transport and phase transitions of zirconia by on-the-fly machine-learned interatomic potentials
por: Carla Verdi, et al.
Publicado: (2021)