A well-trained artificial neural network for predicting the rheological behavior of MWCNT–Al2O3 (30–70%)/oil SAE40 hybrid nanofluid
Abstract In this study, the influence of different volume fractions ( $$\phi$$ ϕ ) of nanoparticles and temperatures on the dynamic viscosity ( $$\mu_{nf}$$ μ nf ) of MWCNT–Al2O3 (30–70%)/oil SAE40 hybrid nanofluid was examined by ANN. For this reason, the $$\mu_{nf}$$ μ nf was derived for 203 vario...
Guardado en:
Autores principales: | Mohammad Hemmat Esfe, S. Ali Eftekhari, Maboud Hekmatifar, Davood Toghraie |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/6087d6258bcf4ba4983592ec947f8106 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
An optimal feed-forward artificial neural network model and a new empirical correlation for prediction of the relative viscosity of Al2O3-engine oil nanofluid
por: Mohammad Hemmat Esfe, et al.
Publicado: (2021) -
Combustion process of nanofluids consisting of oxygen molecules and aluminum nanoparticles in a copper nanochannel using molecular dynamics simulation
por: Heng Chen, et al.
Publicado: (2021) -
NANOMETER-SCALE MECHANICAL PROPERTIES OF MWCNT-MUSTARD OIL NANOFLUID AS A POTENTIAL BASE STOKE
por: Vignesh,V., et al.
Publicado: (2021) -
EXPERIMENTAL INVESTIGATION AND MECHANISM ANALYSIS: EFFECT OF CONCENTRATION AND TEMPERATURE ON THE VISCOSITY OF NOVEL MWCNT-MUSTARD OIL NANOFLUID
por: Vignesh,V., et al.
Publicado: (2020) -
Numerical investigation of transient mixed convection of nanofluid in a cavity with non-Darcy porous inner block and rotating cylinders with harmonic motion
por: Nima Shirani, et al.
Publicado: (2021)