“I don’t Think These Devices are Very Culturally Sensitive.”—Impact of Automated Speech Recognition Errors on African Americans
Automated speech recognition (ASR) converts language into text and is used across a variety of applications to assist us in everyday life, from powering virtual assistants, natural language conversations, to enabling dictation services. While recent work suggests that there are racial disparities in...
Guardado en:
Autores principales: | Zion Mengesha, Courtney Heldreth, Michal Lahav, Juliana Sublewski, Elyse Tuennerman |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/608b5ff418ae43a2b343d07afbe00777 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Text-to-speech system for low-resource language using cross-lingual transfer learning and data augmentation
por: Zolzaya Byambadorj, et al.
Publicado: (2021) -
A Hybrid Speech Enhancement Algorithm for Voice Assistance Application
por: Jenifa Gnanamanickam, et al.
Publicado: (2021) -
Computational Work with Very Large Text Collections
por: John Unsworth
Publicado: (2011) -
Bangla hate speech detection on social media using attention-based recurrent neural network
por: Das Amit Kumar, et al.
Publicado: (2021) -
Speech Organization of Development Program as Strategic Planning Document
por: A. S. Bystrova
Publicado: (2018)