Humidity and Deposition Solution Play a Critical Role in Virus Inactivation by Heat Treatment of N95 Respirators

ABSTRACT Supply shortages of N95 respirators during the coronavirus disease 2019 (COVID-19) pandemic have motivated institutions to develop feasible and effective N95 respirator reuse strategies. In particular, heat decontamination is a treatment method that scales well and can be implemented in set...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Nicole Rockey, Peter J. Arts, Lucinda Li, Katherine R. Harrison, Kathryn Langenfeld, William J. Fitzsimmons, Adam S. Lauring, Nancy G. Love, Keith S. Kaye, Lutgarde Raskin, William W. Roberts, Bridget Hegarty, Krista R. Wigginton
Formato: article
Lenguaje:EN
Publicado: American Society for Microbiology 2020
Materias:
N95
Acceso en línea:https://doaj.org/article/609f5bbfe8554c4982ebc0ef9510a797
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:609f5bbfe8554c4982ebc0ef9510a797
record_format dspace
spelling oai:doaj.org-article:609f5bbfe8554c4982ebc0ef9510a7972021-11-15T15:30:58ZHumidity and Deposition Solution Play a Critical Role in Virus Inactivation by Heat Treatment of N95 Respirators10.1128/mSphere.00588-202379-5042https://doaj.org/article/609f5bbfe8554c4982ebc0ef9510a7972020-10-01T00:00:00Zhttps://journals.asm.org/doi/10.1128/mSphere.00588-20https://doaj.org/toc/2379-5042ABSTRACT Supply shortages of N95 respirators during the coronavirus disease 2019 (COVID-19) pandemic have motivated institutions to develop feasible and effective N95 respirator reuse strategies. In particular, heat decontamination is a treatment method that scales well and can be implemented in settings with variable or limited resources. Prior studies using multiple inactivation methods, however, have often focused on a single virus under narrowly defined conditions, making it difficult to develop guiding principles for inactivating emerging or difficult-to-culture viruses. We systematically explored how temperature, humidity, and virus deposition solutions impact the inactivation of viruses deposited and dried on N95 respirator coupons. We exposed four virus surrogates across a range of structures and phylogenies, including two bacteriophages (MS2 and phi6), a mouse coronavirus (murine hepatitis virus [MHV]), and a recombinant human influenza A virus subtype H3N2 (IAV), to heat treatment for 30 min in multiple deposition solutions across several temperatures and relative humidities (RHs). We observed that elevated RH was essential for effective heat inactivation of all four viruses tested. For heat treatments between 72°C and 82°C, RHs greater than 50% resulted in a >6-log10 inactivation of bacteriophages, and RHs greater than 25% resulted in a >3.5-log10 inactivation of MHV and IAV. Furthermore, deposition of viruses in host cell culture media greatly enhanced virus inactivation by heat and humidity compared to other deposition solutions, such as phosphate-buffered saline, phosphate-buffered saline with bovine serum albumin, and human saliva. Past and future heat treatment methods must therefore explicitly account for deposition solutions as a factor that will strongly influence observed virus inactivation rates. Overall, our data set can inform the design and validation of effective heat-based decontamination strategies for N95 respirators and other porous surfaces, especially for emerging viruses that may be of immediate and future public health concern. IMPORTANCE Shortages of personal protective equipment, including N95 respirators, during the coronavirus (CoV) disease 2019 (COVID-19) pandemic have highlighted the need to develop effective decontamination strategies for their reuse. This is particularly important in health care settings for reducing exposure to respiratory viruses, like severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes COVID-19. Although several treatment methods are available, a widely accessible strategy will be necessary to combat shortages on a global scale. We demonstrate that the combination of heat and humidity inactivates a range of RNA viruses, including both viral pathogens and common viral pathogen surrogates, after deposition on N95 respirators and achieves the necessary virus inactivation detailed by the U.S. Food and Drug Administration guidelines to validate N95 respirator decontamination technologies. We further demonstrate that depositing viruses onto surfaces when suspended in culture media can greatly enhance observed inactivation, adding caution to how heat and humidity treatment methods are validated.Nicole RockeyPeter J. ArtsLucinda LiKatherine R. HarrisonKathryn LangenfeldWilliam J. FitzsimmonsAdam S. LauringNancy G. LoveKeith S. KayeLutgarde RaskinWilliam W. RobertsBridget HegartyKrista R. WiggintonAmerican Society for MicrobiologyarticleN95bacteriophagescoronavirusdecontaminationdropletfomiteMicrobiologyQR1-502ENmSphere, Vol 5, Iss 5 (2020)
institution DOAJ
collection DOAJ
language EN
topic N95
bacteriophages
coronavirus
decontamination
droplet
fomite
Microbiology
QR1-502
spellingShingle N95
bacteriophages
coronavirus
decontamination
droplet
fomite
Microbiology
QR1-502
Nicole Rockey
Peter J. Arts
Lucinda Li
Katherine R. Harrison
Kathryn Langenfeld
William J. Fitzsimmons
Adam S. Lauring
Nancy G. Love
Keith S. Kaye
Lutgarde Raskin
William W. Roberts
Bridget Hegarty
Krista R. Wigginton
Humidity and Deposition Solution Play a Critical Role in Virus Inactivation by Heat Treatment of N95 Respirators
description ABSTRACT Supply shortages of N95 respirators during the coronavirus disease 2019 (COVID-19) pandemic have motivated institutions to develop feasible and effective N95 respirator reuse strategies. In particular, heat decontamination is a treatment method that scales well and can be implemented in settings with variable or limited resources. Prior studies using multiple inactivation methods, however, have often focused on a single virus under narrowly defined conditions, making it difficult to develop guiding principles for inactivating emerging or difficult-to-culture viruses. We systematically explored how temperature, humidity, and virus deposition solutions impact the inactivation of viruses deposited and dried on N95 respirator coupons. We exposed four virus surrogates across a range of structures and phylogenies, including two bacteriophages (MS2 and phi6), a mouse coronavirus (murine hepatitis virus [MHV]), and a recombinant human influenza A virus subtype H3N2 (IAV), to heat treatment for 30 min in multiple deposition solutions across several temperatures and relative humidities (RHs). We observed that elevated RH was essential for effective heat inactivation of all four viruses tested. For heat treatments between 72°C and 82°C, RHs greater than 50% resulted in a >6-log10 inactivation of bacteriophages, and RHs greater than 25% resulted in a >3.5-log10 inactivation of MHV and IAV. Furthermore, deposition of viruses in host cell culture media greatly enhanced virus inactivation by heat and humidity compared to other deposition solutions, such as phosphate-buffered saline, phosphate-buffered saline with bovine serum albumin, and human saliva. Past and future heat treatment methods must therefore explicitly account for deposition solutions as a factor that will strongly influence observed virus inactivation rates. Overall, our data set can inform the design and validation of effective heat-based decontamination strategies for N95 respirators and other porous surfaces, especially for emerging viruses that may be of immediate and future public health concern. IMPORTANCE Shortages of personal protective equipment, including N95 respirators, during the coronavirus (CoV) disease 2019 (COVID-19) pandemic have highlighted the need to develop effective decontamination strategies for their reuse. This is particularly important in health care settings for reducing exposure to respiratory viruses, like severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes COVID-19. Although several treatment methods are available, a widely accessible strategy will be necessary to combat shortages on a global scale. We demonstrate that the combination of heat and humidity inactivates a range of RNA viruses, including both viral pathogens and common viral pathogen surrogates, after deposition on N95 respirators and achieves the necessary virus inactivation detailed by the U.S. Food and Drug Administration guidelines to validate N95 respirator decontamination technologies. We further demonstrate that depositing viruses onto surfaces when suspended in culture media can greatly enhance observed inactivation, adding caution to how heat and humidity treatment methods are validated.
format article
author Nicole Rockey
Peter J. Arts
Lucinda Li
Katherine R. Harrison
Kathryn Langenfeld
William J. Fitzsimmons
Adam S. Lauring
Nancy G. Love
Keith S. Kaye
Lutgarde Raskin
William W. Roberts
Bridget Hegarty
Krista R. Wigginton
author_facet Nicole Rockey
Peter J. Arts
Lucinda Li
Katherine R. Harrison
Kathryn Langenfeld
William J. Fitzsimmons
Adam S. Lauring
Nancy G. Love
Keith S. Kaye
Lutgarde Raskin
William W. Roberts
Bridget Hegarty
Krista R. Wigginton
author_sort Nicole Rockey
title Humidity and Deposition Solution Play a Critical Role in Virus Inactivation by Heat Treatment of N95 Respirators
title_short Humidity and Deposition Solution Play a Critical Role in Virus Inactivation by Heat Treatment of N95 Respirators
title_full Humidity and Deposition Solution Play a Critical Role in Virus Inactivation by Heat Treatment of N95 Respirators
title_fullStr Humidity and Deposition Solution Play a Critical Role in Virus Inactivation by Heat Treatment of N95 Respirators
title_full_unstemmed Humidity and Deposition Solution Play a Critical Role in Virus Inactivation by Heat Treatment of N95 Respirators
title_sort humidity and deposition solution play a critical role in virus inactivation by heat treatment of n95 respirators
publisher American Society for Microbiology
publishDate 2020
url https://doaj.org/article/609f5bbfe8554c4982ebc0ef9510a797
work_keys_str_mv AT nicolerockey humidityanddepositionsolutionplayacriticalroleinvirusinactivationbyheattreatmentofn95respirators
AT peterjarts humidityanddepositionsolutionplayacriticalroleinvirusinactivationbyheattreatmentofn95respirators
AT lucindali humidityanddepositionsolutionplayacriticalroleinvirusinactivationbyheattreatmentofn95respirators
AT katherinerharrison humidityanddepositionsolutionplayacriticalroleinvirusinactivationbyheattreatmentofn95respirators
AT kathrynlangenfeld humidityanddepositionsolutionplayacriticalroleinvirusinactivationbyheattreatmentofn95respirators
AT williamjfitzsimmons humidityanddepositionsolutionplayacriticalroleinvirusinactivationbyheattreatmentofn95respirators
AT adamslauring humidityanddepositionsolutionplayacriticalroleinvirusinactivationbyheattreatmentofn95respirators
AT nancyglove humidityanddepositionsolutionplayacriticalroleinvirusinactivationbyheattreatmentofn95respirators
AT keithskaye humidityanddepositionsolutionplayacriticalroleinvirusinactivationbyheattreatmentofn95respirators
AT lutgarderaskin humidityanddepositionsolutionplayacriticalroleinvirusinactivationbyheattreatmentofn95respirators
AT williamwroberts humidityanddepositionsolutionplayacriticalroleinvirusinactivationbyheattreatmentofn95respirators
AT bridgethegarty humidityanddepositionsolutionplayacriticalroleinvirusinactivationbyheattreatmentofn95respirators
AT kristarwigginton humidityanddepositionsolutionplayacriticalroleinvirusinactivationbyheattreatmentofn95respirators
_version_ 1718427888420651008