Deep Learning-Based Big Data Analytics for Internet of Vehicles: Taxonomy, Challenges, and Research Directions
The Internet of Vehicles (IoV) is a developing technology attracting attention from the industry and the academia. Hundreds of millions of vehicles are projected to be connected within the IoV environments by 2035. Each vehicle in the environment is expected to generate massive amounts of data. Curr...
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Hindawi Limited
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/60ab02f2ab0d4d88a6fd25d6a471ddbf |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:60ab02f2ab0d4d88a6fd25d6a471ddbf |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:60ab02f2ab0d4d88a6fd25d6a471ddbf2021-11-22T01:11:17ZDeep Learning-Based Big Data Analytics for Internet of Vehicles: Taxonomy, Challenges, and Research Directions1563-514710.1155/2021/9022558https://doaj.org/article/60ab02f2ab0d4d88a6fd25d6a471ddbf2021-01-01T00:00:00Zhttp://dx.doi.org/10.1155/2021/9022558https://doaj.org/toc/1563-5147The Internet of Vehicles (IoV) is a developing technology attracting attention from the industry and the academia. Hundreds of millions of vehicles are projected to be connected within the IoV environments by 2035. Each vehicle in the environment is expected to generate massive amounts of data. Currently, surveys on leveraging deep learning (DL) in the IoV within the context of big data analytics (BDA) are scarce. In this paper, we present a survey and explore the theoretical perspective of the role of DL in the IoV within the context of BDA. The study has unveiled substantial research opportunities that cut across DL, IoV, and BDA. Exploring DL in the IoV within BDA is an infant research area requiring active attention from researchers to fully understand the emerging concept. The survey proposes a model of IoV environment integrated into the cloud equipped with a high-performance computing server, DL architecture, and Apache Spark for data analytics. The current developments, challenges, and opportunities for future research are presented. This study can guide expert and novice researchers on further development of the application of DL in the IoV within the context of BDA.Haruna ChiromaShafi’i M. AbdulhamidIbrahim A. T. HashemKayode S. AdewoleAbsalom E. EzugwuSaidu AbubakarLiyana ShuibHindawi LimitedarticleEngineering (General). Civil engineering (General)TA1-2040MathematicsQA1-939ENMathematical Problems in Engineering, Vol 2021 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Engineering (General). Civil engineering (General) TA1-2040 Mathematics QA1-939 |
spellingShingle |
Engineering (General). Civil engineering (General) TA1-2040 Mathematics QA1-939 Haruna Chiroma Shafi’i M. Abdulhamid Ibrahim A. T. Hashem Kayode S. Adewole Absalom E. Ezugwu Saidu Abubakar Liyana Shuib Deep Learning-Based Big Data Analytics for Internet of Vehicles: Taxonomy, Challenges, and Research Directions |
description |
The Internet of Vehicles (IoV) is a developing technology attracting attention from the industry and the academia. Hundreds of millions of vehicles are projected to be connected within the IoV environments by 2035. Each vehicle in the environment is expected to generate massive amounts of data. Currently, surveys on leveraging deep learning (DL) in the IoV within the context of big data analytics (BDA) are scarce. In this paper, we present a survey and explore the theoretical perspective of the role of DL in the IoV within the context of BDA. The study has unveiled substantial research opportunities that cut across DL, IoV, and BDA. Exploring DL in the IoV within BDA is an infant research area requiring active attention from researchers to fully understand the emerging concept. The survey proposes a model of IoV environment integrated into the cloud equipped with a high-performance computing server, DL architecture, and Apache Spark for data analytics. The current developments, challenges, and opportunities for future research are presented. This study can guide expert and novice researchers on further development of the application of DL in the IoV within the context of BDA. |
format |
article |
author |
Haruna Chiroma Shafi’i M. Abdulhamid Ibrahim A. T. Hashem Kayode S. Adewole Absalom E. Ezugwu Saidu Abubakar Liyana Shuib |
author_facet |
Haruna Chiroma Shafi’i M. Abdulhamid Ibrahim A. T. Hashem Kayode S. Adewole Absalom E. Ezugwu Saidu Abubakar Liyana Shuib |
author_sort |
Haruna Chiroma |
title |
Deep Learning-Based Big Data Analytics for Internet of Vehicles: Taxonomy, Challenges, and Research Directions |
title_short |
Deep Learning-Based Big Data Analytics for Internet of Vehicles: Taxonomy, Challenges, and Research Directions |
title_full |
Deep Learning-Based Big Data Analytics for Internet of Vehicles: Taxonomy, Challenges, and Research Directions |
title_fullStr |
Deep Learning-Based Big Data Analytics for Internet of Vehicles: Taxonomy, Challenges, and Research Directions |
title_full_unstemmed |
Deep Learning-Based Big Data Analytics for Internet of Vehicles: Taxonomy, Challenges, and Research Directions |
title_sort |
deep learning-based big data analytics for internet of vehicles: taxonomy, challenges, and research directions |
publisher |
Hindawi Limited |
publishDate |
2021 |
url |
https://doaj.org/article/60ab02f2ab0d4d88a6fd25d6a471ddbf |
work_keys_str_mv |
AT harunachiroma deeplearningbasedbigdataanalyticsforinternetofvehiclestaxonomychallengesandresearchdirections AT shafiimabdulhamid deeplearningbasedbigdataanalyticsforinternetofvehiclestaxonomychallengesandresearchdirections AT ibrahimathashem deeplearningbasedbigdataanalyticsforinternetofvehiclestaxonomychallengesandresearchdirections AT kayodesadewole deeplearningbasedbigdataanalyticsforinternetofvehiclestaxonomychallengesandresearchdirections AT absalomeezugwu deeplearningbasedbigdataanalyticsforinternetofvehiclestaxonomychallengesandresearchdirections AT saiduabubakar deeplearningbasedbigdataanalyticsforinternetofvehiclestaxonomychallengesandresearchdirections AT liyanashuib deeplearningbasedbigdataanalyticsforinternetofvehiclestaxonomychallengesandresearchdirections |
_version_ |
1718418283461345280 |