StackDA: A Stacked Dual Attention Neural Network for Multivariate Time-Series Forecasting
Multivariate time-series forecasting derives key seasonality from past patterns to predict future time-series. Multi-step forecasting is crucial in the industrial sector because a continuous perspective leads to more effective decisions. However, because it depends on previous prediction values, mul...
Guardado en:
Autores principales: | Jungsoo Hong, Jinuk Park, Sanghyun Park |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/60abcef94d50444f8d5eaf4ecd88a1e6 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Rainfall prediction: A comparative analysis of modern machine learning algorithms for time-series forecasting
por: Ari Yair Barrera-Animas, et al.
Publicado: (2022) -
Highly Accurate Short-Term Gas Consumption and Elapsed Time Forecasting Using Multi-Channel Deep Neural Network
por: Yeonjee Choi, et al.
Publicado: (2021) -
Energy Load Forecasting Using a Dual-Stage Attention-Based Recurrent Neural Network
por: Alper Ozcan, et al.
Publicado: (2021) -
A Gold Futures Price Forecast Model Based on SGRU-AM
por: Jingyang Wang, et al.
Publicado: (2021) -
Electricity Spot Prices Forecasting Based on Ensemble Learning
por: Nadeela Bibi, et al.
Publicado: (2021)