Spatiotemporal Analysis of Haze in Beijing Based on the Multi-Convolution Model
As a kind of air pollution, haze has complex temporal and spatial characteristics. From the perspective of time, haze has different causes and levels of pollution in different seasons. From the perspective of space, the concentration of haze in adjacent areas will affect each other, showing some cor...
Guardado en:
Autores principales: | Lirong Yin, Lei Wang, Weizheng Huang, Shan Liu, Bo Yang, Wenfeng Zheng |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/60b180760bb84d958137e447f8db4169 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Grey Correlation Analysis of Haze Impact Factor PM2.5
por: Jiayi Xu, et al.
Publicado: (2021) -
A Haze Prediction Model in Chengdu Based on LSTM
por: Xinyi Wu, et al.
Publicado: (2021) -
Chemical Characterization, Source, and SOA Production of Intermediate Volatile Organic Compounds during Haze Episodes in North China
por: Xinxin Feng, et al.
Publicado: (2021) -
A Novel Lidar Signal Denoising Method Based on Convolutional Autoencoding Deep Learning Neural Network
por: Minghuan Hu, et al.
Publicado: (2021) -
Specification of Modified Jarvis Model Parameterization for <i>Pinus cembra</i>
por: Anna Buchholcerová, et al.
Publicado: (2021)