Simultaneous assessment of oxygen- and nitrate-based net community production in a temperate shelf sea from a single ocean glider
<p>The continental shelf seas are important at a global scale for ecosystem services. These highly dynamic regions are under a wide range of stresses, and as such future management requires appropriate monitoring measures. A key metric to understanding and predicting future change are the rate...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Copernicus Publications
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/60b65ee79c1f4948950c93a3b0424b78 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:60b65ee79c1f4948950c93a3b0424b78 |
---|---|
record_format |
dspace |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Ecology QH540-549.5 Life QH501-531 Geology QE1-996.5 |
spellingShingle |
Ecology QH540-549.5 Life QH501-531 Geology QE1-996.5 T. Hull T. Hull N. Greenwood N. Greenwood A. Birchill A. Birchill A. Beaton M. Palmer J. Kaiser Simultaneous assessment of oxygen- and nitrate-based net community production in a temperate shelf sea from a single ocean glider |
description |
<p>The continental shelf seas are important at a global scale for ecosystem services.
These highly dynamic regions are under a wide range of stresses, and as such future management requires appropriate monitoring measures.
A key metric to understanding and predicting future change are the rates of biological production.
We present here the use of an autonomous underwater glider with an oxygen (<span class="inline-formula">O<sub>2</sub></span>) and a wet-chemical microfluidic total oxidised nitrogen (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M2" display="inline" overflow="scroll" dspmath="mathml"><mrow><mrow class="chem"><msup><msub><mi mathvariant="normal">NO</mi><mi>x</mi></msub><mo>-</mo></msup></mrow><mo>=</mo><msup><mrow class="chem"><msub><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn></msub></mrow><mo>-</mo></msup><mo>+</mo><msup><mrow class="chem"><msub><mi mathvariant="normal">NO</mi><mn mathvariant="normal">2</mn></msub></mrow><mo>-</mo></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="109pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="409333b671deea5f9edff7765dfec49e"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="bg-18-6167-2021-ie00001.svg" width="109pt" height="15pt" src="bg-18-6167-2021-ie00001.png"/></svg:svg></span></span>) sensor during a spring bloom as part of a 2019 pilot autonomous shelf sea monitoring study.
We find exceptionally high rates of net community production using both <span class="inline-formula">O<sub>2</sub></span> and <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M4" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msup><msub><mi mathvariant="normal">NO</mi><mi>x</mi></msub><mo>-</mo></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="31pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="d9c234e39184fff862105df14f04120f"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="bg-18-6167-2021-ie00002.svg" width="31pt" height="14pt" src="bg-18-6167-2021-ie00002.png"/></svg:svg></span></span> water column inventory changes,
corrected for air–sea gas exchange in case of <span class="inline-formula">O<sub>2</sub></span>.
We compare these rates with 2007 and 2008 mooring observations finding similar rates of <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M6" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msup><msub><mi mathvariant="normal">NO</mi><mi>x</mi></msub><mo>-</mo></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="31pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="a4c4c99bafc2a48051e735ec178221a8"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="bg-18-6167-2021-ie00003.svg" width="31pt" height="14pt" src="bg-18-6167-2021-ie00003.png"/></svg:svg></span></span> consumption.
With these complementary methods we determine the <span class="inline-formula">O<sub>2</sub>:N</span> amount ratio of the newly produced organic matter (7.8 <span class="inline-formula">±</span> 0.4) and the overall <span class="inline-formula">O<sub>2</sub>:N</span> ratio for the total water column (5.7 <span class="inline-formula">±</span> 0.4).
The former is close to the canonical Redfield <span class="inline-formula">O<sub>2</sub>:N</span> ratio of 8.6 <span class="inline-formula">±</span> 1.0,
whereas the latter may be explained by a combination of new organic matter production and preferential remineralisation of more reduced organic matter at a higher <span class="inline-formula">O<sub>2</sub>:N</span> ratio below the euphotic zone.</p> |
format |
article |
author |
T. Hull T. Hull N. Greenwood N. Greenwood A. Birchill A. Birchill A. Beaton M. Palmer J. Kaiser |
author_facet |
T. Hull T. Hull N. Greenwood N. Greenwood A. Birchill A. Birchill A. Beaton M. Palmer J. Kaiser |
author_sort |
T. Hull |
title |
Simultaneous assessment of oxygen- and nitrate-based net community production in a temperate shelf sea from a single ocean glider |
title_short |
Simultaneous assessment of oxygen- and nitrate-based net community production in a temperate shelf sea from a single ocean glider |
title_full |
Simultaneous assessment of oxygen- and nitrate-based net community production in a temperate shelf sea from a single ocean glider |
title_fullStr |
Simultaneous assessment of oxygen- and nitrate-based net community production in a temperate shelf sea from a single ocean glider |
title_full_unstemmed |
Simultaneous assessment of oxygen- and nitrate-based net community production in a temperate shelf sea from a single ocean glider |
title_sort |
simultaneous assessment of oxygen- and nitrate-based net community production in a temperate shelf sea from a single ocean glider |
publisher |
Copernicus Publications |
publishDate |
2021 |
url |
https://doaj.org/article/60b65ee79c1f4948950c93a3b0424b78 |
work_keys_str_mv |
AT thull simultaneousassessmentofoxygenandnitratebasednetcommunityproductioninatemperateshelfseafromasingleoceanglider AT thull simultaneousassessmentofoxygenandnitratebasednetcommunityproductioninatemperateshelfseafromasingleoceanglider AT ngreenwood simultaneousassessmentofoxygenandnitratebasednetcommunityproductioninatemperateshelfseafromasingleoceanglider AT ngreenwood simultaneousassessmentofoxygenandnitratebasednetcommunityproductioninatemperateshelfseafromasingleoceanglider AT abirchill simultaneousassessmentofoxygenandnitratebasednetcommunityproductioninatemperateshelfseafromasingleoceanglider AT abirchill simultaneousassessmentofoxygenandnitratebasednetcommunityproductioninatemperateshelfseafromasingleoceanglider AT abeaton simultaneousassessmentofoxygenandnitratebasednetcommunityproductioninatemperateshelfseafromasingleoceanglider AT mpalmer simultaneousassessmentofoxygenandnitratebasednetcommunityproductioninatemperateshelfseafromasingleoceanglider AT jkaiser simultaneousassessmentofoxygenandnitratebasednetcommunityproductioninatemperateshelfseafromasingleoceanglider |
_version_ |
1718405356741197824 |
spelling |
oai:doaj.org-article:60b65ee79c1f4948950c93a3b0424b782021-12-01T08:20:10ZSimultaneous assessment of oxygen- and nitrate-based net community production in a temperate shelf sea from a single ocean glider10.5194/bg-18-6167-20211726-41701726-4189https://doaj.org/article/60b65ee79c1f4948950c93a3b0424b782021-12-01T00:00:00Zhttps://bg.copernicus.org/articles/18/6167/2021/bg-18-6167-2021.pdfhttps://doaj.org/toc/1726-4170https://doaj.org/toc/1726-4189<p>The continental shelf seas are important at a global scale for ecosystem services. These highly dynamic regions are under a wide range of stresses, and as such future management requires appropriate monitoring measures. A key metric to understanding and predicting future change are the rates of biological production. We present here the use of an autonomous underwater glider with an oxygen (<span class="inline-formula">O<sub>2</sub></span>) and a wet-chemical microfluidic total oxidised nitrogen (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M2" display="inline" overflow="scroll" dspmath="mathml"><mrow><mrow class="chem"><msup><msub><mi mathvariant="normal">NO</mi><mi>x</mi></msub><mo>-</mo></msup></mrow><mo>=</mo><msup><mrow class="chem"><msub><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn></msub></mrow><mo>-</mo></msup><mo>+</mo><msup><mrow class="chem"><msub><mi mathvariant="normal">NO</mi><mn mathvariant="normal">2</mn></msub></mrow><mo>-</mo></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="109pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="409333b671deea5f9edff7765dfec49e"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="bg-18-6167-2021-ie00001.svg" width="109pt" height="15pt" src="bg-18-6167-2021-ie00001.png"/></svg:svg></span></span>) sensor during a spring bloom as part of a 2019 pilot autonomous shelf sea monitoring study. We find exceptionally high rates of net community production using both <span class="inline-formula">O<sub>2</sub></span> and <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M4" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msup><msub><mi mathvariant="normal">NO</mi><mi>x</mi></msub><mo>-</mo></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="31pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="d9c234e39184fff862105df14f04120f"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="bg-18-6167-2021-ie00002.svg" width="31pt" height="14pt" src="bg-18-6167-2021-ie00002.png"/></svg:svg></span></span> water column inventory changes, corrected for air–sea gas exchange in case of <span class="inline-formula">O<sub>2</sub></span>. We compare these rates with 2007 and 2008 mooring observations finding similar rates of <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M6" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msup><msub><mi mathvariant="normal">NO</mi><mi>x</mi></msub><mo>-</mo></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="31pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="a4c4c99bafc2a48051e735ec178221a8"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="bg-18-6167-2021-ie00003.svg" width="31pt" height="14pt" src="bg-18-6167-2021-ie00003.png"/></svg:svg></span></span> consumption. With these complementary methods we determine the <span class="inline-formula">O<sub>2</sub>:N</span> amount ratio of the newly produced organic matter (7.8 <span class="inline-formula">±</span> 0.4) and the overall <span class="inline-formula">O<sub>2</sub>:N</span> ratio for the total water column (5.7 <span class="inline-formula">±</span> 0.4). The former is close to the canonical Redfield <span class="inline-formula">O<sub>2</sub>:N</span> ratio of 8.6 <span class="inline-formula">±</span> 1.0, whereas the latter may be explained by a combination of new organic matter production and preferential remineralisation of more reduced organic matter at a higher <span class="inline-formula">O<sub>2</sub>:N</span> ratio below the euphotic zone.</p>T. HullT. HullN. GreenwoodN. GreenwoodA. BirchillA. BirchillA. BeatonM. PalmerJ. KaiserCopernicus PublicationsarticleEcologyQH540-549.5LifeQH501-531GeologyQE1-996.5ENBiogeosciences, Vol 18, Pp 6167-6180 (2021) |