Simultaneous assessment of oxygen- and nitrate-based net community production in a temperate shelf sea from a single ocean glider

<p>The continental shelf seas are important at a global scale for ecosystem services. These highly dynamic regions are under a wide range of stresses, and as such future management requires appropriate monitoring measures. A key metric to understanding and predicting future change are the rate...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: T. Hull, N. Greenwood, A. Birchill, A. Beaton, M. Palmer, J. Kaiser
Formato: article
Lenguaje:EN
Publicado: Copernicus Publications 2021
Materias:
Acceso en línea:https://doaj.org/article/60b65ee79c1f4948950c93a3b0424b78
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:60b65ee79c1f4948950c93a3b0424b78
record_format dspace
institution DOAJ
collection DOAJ
language EN
topic Ecology
QH540-549.5
Life
QH501-531
Geology
QE1-996.5
spellingShingle Ecology
QH540-549.5
Life
QH501-531
Geology
QE1-996.5
T. Hull
T. Hull
N. Greenwood
N. Greenwood
A. Birchill
A. Birchill
A. Beaton
M. Palmer
J. Kaiser
Simultaneous assessment of oxygen- and nitrate-based net community production in a temperate shelf sea from a single ocean glider
description <p>The continental shelf seas are important at a global scale for ecosystem services. These highly dynamic regions are under a wide range of stresses, and as such future management requires appropriate monitoring measures. A key metric to understanding and predicting future change are the rates of biological production. We present here the use of an autonomous underwater glider with an oxygen (<span class="inline-formula">O<sub>2</sub></span>) and a wet-chemical microfluidic total oxidised nitrogen (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M2" display="inline" overflow="scroll" dspmath="mathml"><mrow><mrow class="chem"><msup><msub><mi mathvariant="normal">NO</mi><mi>x</mi></msub><mo>-</mo></msup></mrow><mo>=</mo><msup><mrow class="chem"><msub><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn></msub></mrow><mo>-</mo></msup><mo>+</mo><msup><mrow class="chem"><msub><mi mathvariant="normal">NO</mi><mn mathvariant="normal">2</mn></msub></mrow><mo>-</mo></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="109pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="409333b671deea5f9edff7765dfec49e"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="bg-18-6167-2021-ie00001.svg" width="109pt" height="15pt" src="bg-18-6167-2021-ie00001.png"/></svg:svg></span></span>) sensor during a spring bloom as part of a 2019 pilot autonomous shelf sea monitoring study. We find exceptionally high rates of net community production using both <span class="inline-formula">O<sub>2</sub></span> and <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M4" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msup><msub><mi mathvariant="normal">NO</mi><mi>x</mi></msub><mo>-</mo></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="31pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="d9c234e39184fff862105df14f04120f"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="bg-18-6167-2021-ie00002.svg" width="31pt" height="14pt" src="bg-18-6167-2021-ie00002.png"/></svg:svg></span></span> water column inventory changes, corrected for air–sea gas exchange in case of <span class="inline-formula">O<sub>2</sub></span>. We compare these rates with 2007 and 2008 mooring observations finding similar rates of <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M6" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msup><msub><mi mathvariant="normal">NO</mi><mi>x</mi></msub><mo>-</mo></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="31pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="a4c4c99bafc2a48051e735ec178221a8"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="bg-18-6167-2021-ie00003.svg" width="31pt" height="14pt" src="bg-18-6167-2021-ie00003.png"/></svg:svg></span></span> consumption. With these complementary methods we determine the <span class="inline-formula">O<sub>2</sub>:N</span> amount ratio of the newly produced organic matter (7.8 <span class="inline-formula">±</span> 0.4) and the overall <span class="inline-formula">O<sub>2</sub>:N</span> ratio for the total water column (5.7 <span class="inline-formula">±</span> 0.4). The former is close to the canonical Redfield <span class="inline-formula">O<sub>2</sub>:N</span> ratio of 8.6 <span class="inline-formula">±</span> 1.0, whereas the latter may be explained by a combination of new organic matter production and preferential remineralisation of more reduced organic matter at a higher <span class="inline-formula">O<sub>2</sub>:N</span> ratio below the euphotic zone.</p>
format article
author T. Hull
T. Hull
N. Greenwood
N. Greenwood
A. Birchill
A. Birchill
A. Beaton
M. Palmer
J. Kaiser
author_facet T. Hull
T. Hull
N. Greenwood
N. Greenwood
A. Birchill
A. Birchill
A. Beaton
M. Palmer
J. Kaiser
author_sort T. Hull
title Simultaneous assessment of oxygen- and nitrate-based net community production in a temperate shelf sea from a single ocean glider
title_short Simultaneous assessment of oxygen- and nitrate-based net community production in a temperate shelf sea from a single ocean glider
title_full Simultaneous assessment of oxygen- and nitrate-based net community production in a temperate shelf sea from a single ocean glider
title_fullStr Simultaneous assessment of oxygen- and nitrate-based net community production in a temperate shelf sea from a single ocean glider
title_full_unstemmed Simultaneous assessment of oxygen- and nitrate-based net community production in a temperate shelf sea from a single ocean glider
title_sort simultaneous assessment of oxygen- and nitrate-based net community production in a temperate shelf sea from a single ocean glider
publisher Copernicus Publications
publishDate 2021
url https://doaj.org/article/60b65ee79c1f4948950c93a3b0424b78
work_keys_str_mv AT thull simultaneousassessmentofoxygenandnitratebasednetcommunityproductioninatemperateshelfseafromasingleoceanglider
AT thull simultaneousassessmentofoxygenandnitratebasednetcommunityproductioninatemperateshelfseafromasingleoceanglider
AT ngreenwood simultaneousassessmentofoxygenandnitratebasednetcommunityproductioninatemperateshelfseafromasingleoceanglider
AT ngreenwood simultaneousassessmentofoxygenandnitratebasednetcommunityproductioninatemperateshelfseafromasingleoceanglider
AT abirchill simultaneousassessmentofoxygenandnitratebasednetcommunityproductioninatemperateshelfseafromasingleoceanglider
AT abirchill simultaneousassessmentofoxygenandnitratebasednetcommunityproductioninatemperateshelfseafromasingleoceanglider
AT abeaton simultaneousassessmentofoxygenandnitratebasednetcommunityproductioninatemperateshelfseafromasingleoceanglider
AT mpalmer simultaneousassessmentofoxygenandnitratebasednetcommunityproductioninatemperateshelfseafromasingleoceanglider
AT jkaiser simultaneousassessmentofoxygenandnitratebasednetcommunityproductioninatemperateshelfseafromasingleoceanglider
_version_ 1718405356741197824
spelling oai:doaj.org-article:60b65ee79c1f4948950c93a3b0424b782021-12-01T08:20:10ZSimultaneous assessment of oxygen- and nitrate-based net community production in a temperate shelf sea from a single ocean glider10.5194/bg-18-6167-20211726-41701726-4189https://doaj.org/article/60b65ee79c1f4948950c93a3b0424b782021-12-01T00:00:00Zhttps://bg.copernicus.org/articles/18/6167/2021/bg-18-6167-2021.pdfhttps://doaj.org/toc/1726-4170https://doaj.org/toc/1726-4189<p>The continental shelf seas are important at a global scale for ecosystem services. These highly dynamic regions are under a wide range of stresses, and as such future management requires appropriate monitoring measures. A key metric to understanding and predicting future change are the rates of biological production. We present here the use of an autonomous underwater glider with an oxygen (<span class="inline-formula">O<sub>2</sub></span>) and a wet-chemical microfluidic total oxidised nitrogen (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M2" display="inline" overflow="scroll" dspmath="mathml"><mrow><mrow class="chem"><msup><msub><mi mathvariant="normal">NO</mi><mi>x</mi></msub><mo>-</mo></msup></mrow><mo>=</mo><msup><mrow class="chem"><msub><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn></msub></mrow><mo>-</mo></msup><mo>+</mo><msup><mrow class="chem"><msub><mi mathvariant="normal">NO</mi><mn mathvariant="normal">2</mn></msub></mrow><mo>-</mo></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="109pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="409333b671deea5f9edff7765dfec49e"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="bg-18-6167-2021-ie00001.svg" width="109pt" height="15pt" src="bg-18-6167-2021-ie00001.png"/></svg:svg></span></span>) sensor during a spring bloom as part of a 2019 pilot autonomous shelf sea monitoring study. We find exceptionally high rates of net community production using both <span class="inline-formula">O<sub>2</sub></span> and <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M4" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msup><msub><mi mathvariant="normal">NO</mi><mi>x</mi></msub><mo>-</mo></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="31pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="d9c234e39184fff862105df14f04120f"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="bg-18-6167-2021-ie00002.svg" width="31pt" height="14pt" src="bg-18-6167-2021-ie00002.png"/></svg:svg></span></span> water column inventory changes, corrected for air–sea gas exchange in case of <span class="inline-formula">O<sub>2</sub></span>. We compare these rates with 2007 and 2008 mooring observations finding similar rates of <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M6" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msup><msub><mi mathvariant="normal">NO</mi><mi>x</mi></msub><mo>-</mo></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="31pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="a4c4c99bafc2a48051e735ec178221a8"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="bg-18-6167-2021-ie00003.svg" width="31pt" height="14pt" src="bg-18-6167-2021-ie00003.png"/></svg:svg></span></span> consumption. With these complementary methods we determine the <span class="inline-formula">O<sub>2</sub>:N</span> amount ratio of the newly produced organic matter (7.8 <span class="inline-formula">±</span> 0.4) and the overall <span class="inline-formula">O<sub>2</sub>:N</span> ratio for the total water column (5.7 <span class="inline-formula">±</span> 0.4). The former is close to the canonical Redfield <span class="inline-formula">O<sub>2</sub>:N</span> ratio of 8.6 <span class="inline-formula">±</span> 1.0, whereas the latter may be explained by a combination of new organic matter production and preferential remineralisation of more reduced organic matter at a higher <span class="inline-formula">O<sub>2</sub>:N</span> ratio below the euphotic zone.</p>T. HullT. HullN. GreenwoodN. GreenwoodA. BirchillA. BirchillA. BeatonM. PalmerJ. KaiserCopernicus PublicationsarticleEcologyQH540-549.5LifeQH501-531GeologyQE1-996.5ENBiogeosciences, Vol 18, Pp 6167-6180 (2021)